These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
722 related articles for article (PubMed ID: 28064346)
1. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Naro A; Bramanti A; Leo A; Manuli A; Sciarrone F; Russo M; Bramanti P; Calabrò RS Brain Struct Funct; 2017 Aug; 222(6):2891-2906. PubMed ID: 28064346 [TBL] [Abstract][Full Text] [Related]
2. Does Transcranial Alternating Current Stimulation Induce Cerebellum Plasticity? Feasibility, Safety and Efficacy of a Novel Electrophysiological Approach. Naro A; Leo A; Russo M; Cannavò A; Milardi D; Bramanti P; Calabrò RS Brain Stimul; 2016; 9(3):388-395. PubMed ID: 26946958 [TBL] [Abstract][Full Text] [Related]
3. What Do We Know About the Influence of the Cerebellum on Walking Ability? Promising Findings from Transcranial Alternating Current Stimulation. Naro A; Milardi D; Cacciola A; Russo M; Sciarrone F; La Rosa G; Bramanti A; Bramanti P; Calabrò RS Cerebellum; 2017 Aug; 16(4):859-867. PubMed ID: 28456901 [TBL] [Abstract][Full Text] [Related]
4. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control. Cappon D; D'Ostilio K; Garraux G; Rothwell J; Bisiacchi P Brain Stimul; 2016; 9(4):518-24. PubMed ID: 27038707 [TBL] [Abstract][Full Text] [Related]
5. Isometric agonist and antagonist muscle activation interacts differently with 140-Hz transcranial alternating current stimulation aftereffects at different intensities. Shorafa Y; Halawa I; Hewitt M; Nitsche MA; Antal A; Paulus W J Neurophysiol; 2021 Jul; 126(1):340-348. PubMed ID: 34191638 [TBL] [Abstract][Full Text] [Related]
6. Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Spampinato D; Avci E; Rothwell J; Rocchi L Brain Stimul; 2021; 14(2):277-283. PubMed ID: 33482375 [TBL] [Abstract][Full Text] [Related]
7. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability. Nakazono H; Ogata K; Kuroda T; Tobimatsu S PLoS One; 2016; 11(9):e0162521. PubMed ID: 27607431 [TBL] [Abstract][Full Text] [Related]
8. Cumulative effects of single TMS pulses during beta-tACS are stimulation intensity-dependent. Raco V; Bauer R; Norim S; Gharabaghi A Brain Stimul; 2017; 10(6):1055-1060. PubMed ID: 28779945 [TBL] [Abstract][Full Text] [Related]
9. Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability. Schilberg L; Engelen T; Ten Oever S; Schuhmann T; de Gelder B; de Graaf TA; Sack AT Cortex; 2018 Jun; 103():142-152. PubMed ID: 29635161 [TBL] [Abstract][Full Text] [Related]
10. Exploring parameters of gamma transcranial alternating current stimulation (tACS) and full-spectrum transcranial random noise stimulation (tRNS) on human pharyngeal cortical excitability. Zhang M; Cheng I; Sasegbon A; Dou Z; Hamdy S Neurogastroenterol Motil; 2021 Sep; 33(9):e14173. PubMed ID: 34081376 [TBL] [Abstract][Full Text] [Related]
11. The effects of transcranial alternating current stimulation (tACS) at individual alpha peak frequency (iAPF) on motor cortex excitability in young and elderly adults. Fresnoza S; Christova M; Feil T; Gallasch E; Körner C; Zimmer U; Ischebeck A Exp Brain Res; 2018 Oct; 236(10):2573-2588. PubMed ID: 29943239 [TBL] [Abstract][Full Text] [Related]
12. Long-lasting inhibition of cerebellar output. Popa T; Russo M; Meunier S Brain Stimul; 2010 Jul; 3(3):161-9. PubMed ID: 20633445 [TBL] [Abstract][Full Text] [Related]
13. Cerebellar-Motor Cortex Connectivity: One or Two Different Networks? Spampinato DA; Celnik PA; Rothwell JC J Neurosci; 2020 May; 40(21):4230-4239. PubMed ID: 32312885 [TBL] [Abstract][Full Text] [Related]
14. Cortical inhibition and excitation by bilateral transcranial alternating current stimulation. Cancelli A; Cottone C; Zito G; Di Giorgio M; Pasqualetti P; Tecchio F Restor Neurol Neurosci; 2015; 33(2):105-14. PubMed ID: 25588458 [TBL] [Abstract][Full Text] [Related]
15. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABA Nowak M; Hinson E; van Ede F; Pogosyan A; Guerra A; Quinn A; Brown P; Stagg CJ J Neurosci; 2017 Apr; 37(17):4481-4492. PubMed ID: 28348136 [TBL] [Abstract][Full Text] [Related]
16. Anodal Direct Current Stimulation of the Cerebellum Reduces Cerebellar Brain Inhibition but Does Not Influence Afferent Input from the Hand or Face in Healthy Adults. Doeltgen SH; Young J; Bradnam LV Cerebellum; 2016 Aug; 15(4):466-74. PubMed ID: 26283524 [TBL] [Abstract][Full Text] [Related]
17. Theta-tACS modulates cerebellar-related motor functions and cerebellar-cortical connectivity. Guerra A; Paparella G; Passaretti M; Costa D; Birreci D; De Biase A; Colella D; Angelini L; Cannavacciuolo A; Berardelli A; Bologna M Clin Neurophysiol; 2024 Feb; 158():159-169. PubMed ID: 38219405 [TBL] [Abstract][Full Text] [Related]
18. Neurophysiological aftereffects of 10 Hz and 20 Hz transcranial alternating current stimulation over bilateral sensorimotor cortex. Lafleur LP; Klees-Themens G; Chouinard-Leclaire C; Larochelle-Brunet F; Tremblay S; Lepage JF; Théoret H Brain Res; 2020 Jan; 1727():146542. PubMed ID: 31712086 [TBL] [Abstract][Full Text] [Related]
19. Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner. Miyaguchi S; Otsuru N; Kojima S; Yokota H; Saito K; Inukai Y; Onishi H Neurosci Lett; 2019 Feb; 694():64-68. PubMed ID: 30445151 [TBL] [Abstract][Full Text] [Related]
20. Functional Role of Cerebellar Gamma Frequency in Motor Sequences Learning: a tACS Study. Giustiniani A; Tarantino V; Bracco M; Bonaventura RE; Oliveri M Cerebellum; 2021 Dec; 20(6):913-921. PubMed ID: 33822311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]