These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 28064420)
1. Iron incorporation in biosilica of the marine diatom Stephanopyxis turris: dispersed or clustered? Kaden J; Brückner SI; Machill S; Krafft C; Pöppl A; Brunner E Biometals; 2017 Feb; 30(1):71-82. PubMed ID: 28064420 [TBL] [Abstract][Full Text] [Related]
2. Biomineralization in diatoms-phosphorylated saccharides are part of Stephanopyxis turris biosilica. Hedrich R; Machill S; Brunner E Carbohydr Res; 2013 Jan; 365():52-60. PubMed ID: 23220060 [TBL] [Abstract][Full Text] [Related]
3. Analytical studies on the incorporation of aluminium in the cell walls of the marine diatom Stephanopyxis turris. Machill S; Köhler L; Ueberlein S; Hedrich R; Kunaschk M; Paasch S; Schulze R; Brunner E Biometals; 2013 Feb; 26(1):141-50. PubMed ID: 23266794 [TBL] [Abstract][Full Text] [Related]
4. Solid-state 29Si MAS NMR studies of diatoms: structural characterization of biosilica deposits. Bertermann R; Kröger N; Tacke R Anal Bioanal Chem; 2003 Mar; 375(5):630-4. PubMed ID: 12638046 [TBL] [Abstract][Full Text] [Related]
5. (1)H-(13)C-(29)Si triple resonance and REDOR solid-state NMR-A tool to study interactions between biosilica and organic molecules in diatom cell walls. Wisser D; Brückner SI; Wisser FM; Althoff-Ospelt G; Getzschmann J; Kaskel S; Brunner E Solid State Nucl Magn Reson; 2015; 66-67():33-39. PubMed ID: 25638422 [TBL] [Abstract][Full Text] [Related]
6. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. Jeffryes C; Gutu T; Jiao J; Rorrer GL ACS Nano; 2008 Oct; 2(10):2103-12. PubMed ID: 19206457 [TBL] [Abstract][Full Text] [Related]
7. Insight into the Supramolecular Architecture of Intact Diatom Biosilica from DNP-Supported Solid-State NMR Spectroscopy. Jantschke A; Koers E; Mance D; Weingarth M; Brunner E; Baldus M Angew Chem Int Ed Engl; 2015 Dec; 54(50):15069-73. PubMed ID: 26509491 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Kröger N; Lorenz S; Brunner E; Sumper M Science; 2002 Oct; 298(5593):584-6. PubMed ID: 12386330 [TBL] [Abstract][Full Text] [Related]
9. Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment. Zhen L; Ford N; Gale DK; Roesijadi G; Rorrer GL Biosens Bioelectron; 2016 May; 79():742-8. PubMed ID: 26774089 [TBL] [Abstract][Full Text] [Related]
10. A phase separation model for the nanopatterning of diatom biosilica. Sumper M Science; 2002 Mar; 295(5564):2430-3. PubMed ID: 11923533 [TBL] [Abstract][Full Text] [Related]
11. Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles. Kong X; Squire K; Li E; LeDuff P; Rorrer GL; Tang S; Chen B; McKay CP; Navarro-Gonzalez R; Wang AX IEEE Trans Nanobioscience; 2016 Dec; 15(8):828-834. PubMed ID: 27959817 [TBL] [Abstract][Full Text] [Related]
13. Reconstituting the formation of hierarchically porous silica patterns using diatom biomolecules. Pawolski D; Heintze C; Mey I; Steinem C; Kröger N J Struct Biol; 2018 Oct; 204(1):64-74. PubMed ID: 30009877 [TBL] [Abstract][Full Text] [Related]
14. Gold Nanoparticle-Decorated Diatom Biosilica: A Favorable Catalyst for the Oxidation of d-Glucose. Fischer C; Adam M; Mueller AC; Sperling E; Wustmann M; van Pée KH; Kaskel S; Brunner E ACS Omega; 2016 Dec; 1(6):1253-1261. PubMed ID: 31457194 [TBL] [Abstract][Full Text] [Related]
15. Analysis of organo-silica interactions during valve formation in synchronously growing cells of the diatom Navicula pelliculosa. Heredia A; van der Strate HJ; Delgadillo I; Basiuk VA; Vrieling EG Chembiochem; 2008 Mar; 9(4):573-84. PubMed ID: 18293298 [TBL] [Abstract][Full Text] [Related]
16. Biotemplated diatom silica-titania materials for air purification. Van Eynde E; Tytgat T; Smits M; Verbruggen SW; Hauchecorne B; Lenaerts S Photochem Photobiol Sci; 2013 Apr; 12(4):690-5. PubMed ID: 23128085 [TBL] [Abstract][Full Text] [Related]
17. Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter. De Stefano L; Lamberti A; Rotiroti L; De Stefano M Acta Biomater; 2008 Jan; 4(1):126-30. PubMed ID: 17980684 [TBL] [Abstract][Full Text] [Related]
18. Control of biosilica morphology and mechanical performance by the conserved diatom gene Görlich S; Pawolski D; Zlotnikov I; Kröger N Commun Biol; 2019; 2():245. PubMed ID: 31286062 [TBL] [Abstract][Full Text] [Related]
19. Phosphate-Silica Interactions in Diatom Biosilica and Synthetic Composites Studied by Rotational Echo Double Resonance (REDOR) NMR Spectroscopy. Kolbe F; Daus F; Geyer A; Brunner E Langmuir; 2020 Apr; 36(16):4332-4338. PubMed ID: 32233513 [TBL] [Abstract][Full Text] [Related]
20. Biochemical Composition and Assembly of Biosilica-associated Insoluble Organic Matrices from the Diatom Thalassiosira pseudonana. Kotzsch A; Pawolski D; Milentyev A; Shevchenko A; Scheffel A; Poulsen N; Shevchenko A; Kröger N J Biol Chem; 2016 Mar; 291(10):4982-97. PubMed ID: 26710847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]