These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28065299)

  • 21. Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis.
    Parys JB; McPherson SM; Mathews L; Campbell KP; Longo FJ
    Dev Biol; 1994 Feb; 161(2):466-76. PubMed ID: 8313995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From hemoglobin to urchin spicules.
    Wilt F
    Methods Cell Biol; 2019; 151():43-45. PubMed ID: 30948023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs.
    Sluder G; Lewis K
    J Exp Zool; 1987 Oct; 244(1):89-100. PubMed ID: 3694143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of filamentous actin organization in the sea urchin egg cortex during early cleavage divisions: implications for the mechanism of cytokinesis.
    Wong GK; Allen PG; Begg DA
    Cell Motil Cytoskeleton; 1997; 36(1):30-42. PubMed ID: 8986375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rearrangements of sea urchin egg cytoplasmic membrane domains at fertilization.
    Collas P; Barona T; Poccia DL
    Eur J Cell Biol; 2000 Jan; 79(1):10-6. PubMed ID: 10711421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging cytokinesis of Drosophila S2 cells.
    Kechad A; Hickson GR
    Methods Cell Biol; 2017; 137():47-72. PubMed ID: 28065320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of pseudopterosin A on cell division, cell cycle progression, DNA, and protein synthesis in cultured sea urchin embryos.
    Ettouati WS; Jacobs RS
    Mol Pharmacol; 1987 May; 31(5):500-5. PubMed ID: 3574294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and life cycle of the parthenogenetically activated sea urchin embryo.
    Brandriff B; Hinegardner RI; Steinhardt R
    J Exp Zool; 1975 Apr; 192(1):13-24. PubMed ID: 1092807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Centrosome inheritance after fertilization and nuclear transfer in mammals.
    Sun QY; Schatten H
    Adv Exp Med Biol; 2007; 591():58-71. PubMed ID: 17176554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motility and centrosomal organization during sea urchin and mouse fertilization.
    Schatten H; Schatten G
    Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential uses of sea urchin embryos for identifying toxic chemicals: description of a bioassay incorporating cytologic, cytogenetic and embryologic endpoints.
    Hose JE
    J Appl Toxicol; 1985 Aug; 5(4):245-54. PubMed ID: 4045097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From meiosis to mitosis - the sperm centrosome defines the kinetics of spindle assembly after fertilization in Xenopus.
    Cavazza T; Peset I; Vernos I
    J Cell Sci; 2016 Jul; 129(13):2538-47. PubMed ID: 27179073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sea urchin embryos exposed to thalidomide during early cleavage exhibit abnormal morphogenesis later in development.
    Reichard-Brown JL; Spinner H; McBride K
    Birth Defects Res B Dev Reprod Toxicol; 2009 Dec; 86(6):496-505. PubMed ID: 20025048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toxicity of landfill leachate to sea urchin development with a focus on ammonia.
    Byrne M; Oakes DJ; Pollak JK; Laginestra E
    Cell Biol Toxicol; 2008 Dec; 24(6):503-12. PubMed ID: 18716888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of griseofulvin on fertilization and early development of sea urchins. Independence of DNA synthesis, chromosome condensation, and cytokinesis cycles from microtubule-mediated events.
    Schatten H; Schatten G; Petzelt C; Mazia D
    Eur J Cell Biol; 1982 Apr; 27(1):74-87. PubMed ID: 7084254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acetylcholine synthesis and possible functions during sea urchin development.
    Angelini C; Baccetti B; Piomboni P; Trombino S; Aluigi MG; Stringara S; Gallus L; Falugi C
    Eur J Histochem; 2004; 48(3):235-43. PubMed ID: 15590413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lack of age-associated telomere shortening in long- and short-lived species of sea urchins.
    Francis N; Gregg T; Owen R; Ebert T; Bodnar A
    FEBS Lett; 2006 Aug; 580(19):4713-7. PubMed ID: 16876792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ultrastructural analysis of mitosis and cytokinesis in the zygote of the sea urchin, Arbacia punctulata.
    Longo FJ
    J Morphol; 1972 Oct; 138(2):207-38. PubMed ID: 4672959
    [No Abstract]   [Full Text] [Related]  

  • 39. From fertilization to cancer: the role of centrosomes in the union and separation of genomic material.
    Schatten H; Hueser CN; Chakrabarti A
    Microsc Res Tech; 2000 Jun; 49(5):420-7. PubMed ID: 10842368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations.
    Roepke TA; Snyder MJ; Cherr GN
    Aquat Toxicol; 2005 Jan; 71(2):155-73. PubMed ID: 15642640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.