BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2806553)

  • 1. Indications to an NADPH oxidase as a possible pO2 sensor in the rat carotid body.
    Acker H; Dufau E; Huber J; Sylvester D
    FEBS Lett; 1989 Oct; 256(1-2):75-8. PubMed ID: 2806553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of an NAD(P)H oxidase as a pO2 sensor protein in the rat carotid body.
    Cross AR; Henderson L; Jones OT; Delpiano MA; Hentschel J; Acker H
    Biochem J; 1990 Dec; 272(3):743-7. PubMed ID: 2268299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH oxidase inhibition does not interfere with low PO2 transduction in rat and rabbit CB chemoreceptor cells.
    Obeso A; Gómez-Niño A; Gonzalez C
    Am J Physiol; 1999 Mar; 276(3):C593-601. PubMed ID: 10069986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation.
    Doussière J; Vignais PV
    Eur J Biochem; 1992 Aug; 208(1):61-71. PubMed ID: 1324836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase.
    Cross AR; Jones OT
    Biochem J; 1986 Jul; 237(1):111-6. PubMed ID: 3800872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction.
    Marshall C; Mamary AJ; Verhoeven AJ; Marshall BE
    Am J Respir Cell Mol Biol; 1996 Nov; 15(5):633-44. PubMed ID: 8918370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase.
    O'Donnell BV; Tew DG; Jones OT; England PJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):41-9. PubMed ID: 8439298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts.
    Meier B; Cross AR; Hancock JT; Kaup FJ; Jones OT
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):241-5. PubMed ID: 1850240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type I cells of carotid body.
    Kummer W; Acker H
    J Appl Physiol (1985); 1995 May; 78(5):1904-9. PubMed ID: 7649929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds.
    Doussiere J; Gaillard J; Vignais PV
    Biochemistry; 1999 Mar; 38(12):3694-703. PubMed ID: 10090757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils.
    Ellis JA; Mayer SJ; Jones OT
    Biochem J; 1988 May; 251(3):887-91. PubMed ID: 2843166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.
    Cross AR; Parkinson JF; Jones OT
    Biochem J; 1984 Oct; 223(2):337-44. PubMed ID: 6497852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain.
    Lesuisse E; Casteras-Simon M; Labbe P
    J Biol Chem; 1996 Jun; 271(23):13578-83. PubMed ID: 8662826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of NADPH oxidase inhibitors on hypoxic vasoconstriction in buffer-perfused rabbit lungs.
    Grimminger F; Weissmann N; Spriestersbach R; Becker E; Rosseau S; Seeger W
    Am J Physiol; 1995 May; 268(5 Pt 1):L747-52. PubMed ID: 7762677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photometric characteristics of haem proteins in erythropoietin-producing hepatoma cells (HepG2).
    Görlach A; Holtermann G; Jelkmann W; Hancock JT; Jones SA; Jones OT; Acker H
    Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):771-6. PubMed ID: 8384444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of diphenylene iodonium, an inhibitor of NADPH oxidase, to investigate the antimicrobial action of human monocyte derived macrophages.
    Robertson AK; Cross AR; Jones OT; Andrew PW
    J Immunol Methods; 1990 Oct; 133(2):175-9. PubMed ID: 2121828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the superoxide-producing oxidase of neutrophils. O2 is necessary for the fast reduction of cytochrome b-245 by NADPH.
    Cross AR; Parkinson JF; Jones OT
    Biochem J; 1985 Mar; 226(3):881-4. PubMed ID: 2985050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of potent and selective iodonium-class inhibitors of NADPH oxidases.
    Lu J; Risbood P; Kane CT; Hossain MT; Anderson L; Hill K; Monks A; Wu Y; Antony S; Juhasz A; Liu H; Jiang G; Harris E; Roy K; Meitzler JL; Konaté M; Doroshow JH
    Biochem Pharmacol; 2017 Nov; 143():25-38. PubMed ID: 28709950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inhibition by diphenyleneiodonium and its analogues of superoxide generation by macrophages.
    Hancock JT; Jones OT
    Biochem J; 1987 Feb; 242(1):103-7. PubMed ID: 3036079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidase-like activity in rainbow trout Oncorhynchus mykiss (Walbaum) macrophages.
    Secombes CJ; Cross AR; Sharp GJ; Garcia R
    Dev Comp Immunol; 1992; 16(5):405-13. PubMed ID: 1426492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.