These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 28065599)
1. Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair. Mehta A; Beach A; Haber JE Mol Cell; 2017 Feb; 65(3):515-526.e3. PubMed ID: 28065599 [TBL] [Abstract][Full Text] [Related]
2. Sgs1 and Mph1 Helicases Enforce the Recombination Execution Checkpoint During DNA Double-Strand Break Repair in Saccharomyces cerevisiae. Jain S; Sugawara N; Mehta A; Ryu T; Haber JE Genetics; 2016 Jun; 203(2):667-75. PubMed ID: 27075725 [TBL] [Abstract][Full Text] [Related]
3. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Jain S; Sugawara N; Lydeard J; Vaze M; Tanguy Le Gac N; Haber JE Genes Dev; 2009 Feb; 23(3):291-303. PubMed ID: 19204116 [TBL] [Abstract][Full Text] [Related]
4. Rad9/53BP1 promotes DNA repair via crossover recombination by limiting the Sgs1 and Mph1 helicases. Ferrari M; Rawal CC; Lodovichi S; Vietri MY; Pellicioli A Nat Commun; 2020 Jun; 11(1):3181. PubMed ID: 32576832 [TBL] [Abstract][Full Text] [Related]
5. Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. Stafa A; Donnianni RA; Timashev LA; Lam AF; Symington LS Genetics; 2014 Apr; 196(4):1017-28. PubMed ID: 24496010 [TBL] [Abstract][Full Text] [Related]
6. Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae. Jain S; Sugawara N; Haber JE PLoS Genet; 2016 Apr; 12(4):e1005976. PubMed ID: 27074148 [TBL] [Abstract][Full Text] [Related]
7. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Lydeard JR; Jain S; Yamaguchi M; Haber JE Nature; 2007 Aug; 448(7155):820-3. PubMed ID: 17671506 [TBL] [Abstract][Full Text] [Related]
8. Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends. Lydeard JR; Lipkin-Moore Z; Jain S; Eapen VV; Haber JE PLoS Genet; 2010 May; 6(5):e1000973. PubMed ID: 20523895 [TBL] [Abstract][Full Text] [Related]
9. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Signon L; Malkova A; Naylor ML; Klein H; Haber JE Mol Cell Biol; 2001 Mar; 21(6):2048-56. PubMed ID: 11238940 [TBL] [Abstract][Full Text] [Related]
10. Regulatory control of Sgs1 and Dna2 during eukaryotic DNA end resection. Xue C; Wang W; Crickard JB; Moevus CJ; Kwon Y; Sung P; Greene EC Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6091-6100. PubMed ID: 30850524 [TBL] [Abstract][Full Text] [Related]
11. Measuring the contributions of helicases to break-induced replication. Yan Z; Liu L; Pham N; Thakre PK; Malkova A; Ira G Methods Enzymol; 2022; 672():339-368. PubMed ID: 35934483 [TBL] [Abstract][Full Text] [Related]
12. The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast. Luke-Glaser S; Luke B PLoS One; 2012; 7(7):e42028. PubMed ID: 22848695 [TBL] [Abstract][Full Text] [Related]
13. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Zhu Z; Chung WH; Shim EY; Lee SE; Ira G Cell; 2008 Sep; 134(6):981-94. PubMed ID: 18805091 [TBL] [Abstract][Full Text] [Related]
14. Extensive DNA end processing by exo1 and sgs1 inhibits break-induced replication. Marrero VA; Symington LS PLoS Genet; 2010 Jul; 6(7):e1001007. PubMed ID: 20628570 [TBL] [Abstract][Full Text] [Related]