These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 28065676)
1. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. Elshikh M; Funston S; Chebbi A; Ahmed S; Marchant R; Banat IM N Biotechnol; 2017 May; 36():26-36. PubMed ID: 28065676 [TBL] [Abstract][Full Text] [Related]
2. Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. Elshikh M; Moya-Ramírez I; Moens H; Roelants S; Soetaert W; Marchant R; Banat IM J Appl Microbiol; 2017 Nov; 123(5):1111-1123. PubMed ID: 28766815 [TBL] [Abstract][Full Text] [Related]
3. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006. De Rienzo MA; Martin PJ Curr Microbiol; 2016 Aug; 73(2):183-9. PubMed ID: 27113589 [TBL] [Abstract][Full Text] [Related]
4. Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Tavares LF; Silva PM; Junqueira M; Mariano DC; Nogueira FC; Domont GB; Freire DM; Neves BC Appl Microbiol Biotechnol; 2013 Mar; 97(5):1909-21. PubMed ID: 23053103 [TBL] [Abstract][Full Text] [Related]
5. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
6. Sustainable rhamnolipids production in the next decade - Advancing with Burkholderia thailandensis as a potent biocatalytic strain. Kumar R; Barbhuiya RI; Bohra V; Wong JWC; Singh A; Kaur G Microbiol Res; 2023 Jul; 272():127386. PubMed ID: 37094547 [TBL] [Abstract][Full Text] [Related]
8. Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Funston SJ; Tsaousi K; Rudden M; Smyth TJ; Stevenson PS; Marchant R; Banat IM Appl Microbiol Biotechnol; 2016 Sep; 100(18):7945-56. PubMed ID: 27147528 [TBL] [Abstract][Full Text] [Related]
9. Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection. Chebbi A; Elshikh M; Haque F; Ahmed S; Dobbin S; Marchant R; Sayadi S; Chamkha M; Banat IM J Basic Microbiol; 2017 May; 57(5):364-375. PubMed ID: 28156000 [TBL] [Abstract][Full Text] [Related]
10. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. Dubeau D; Déziel E; Woods DE; Lépine F BMC Microbiol; 2009 Dec; 9():263. PubMed ID: 20017946 [TBL] [Abstract][Full Text] [Related]
11. Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward to tailor-made rhamnolipids. Wittgens A; Santiago-Schuebel B; Henkel M; Tiso T; Blank LM; Hausmann R; Hofmann D; Wilhelm S; Jaeger KE; Rosenau F Appl Microbiol Biotechnol; 2018 Feb; 102(3):1229-1239. PubMed ID: 29264775 [TBL] [Abstract][Full Text] [Related]
12. Rhamnolipids and surfactin inhibit the growth or formation of oral bacterial biofilm. Yamasaki R; Kawano A; Yoshioka Y; Ariyoshi W BMC Microbiol; 2020 Nov; 20(1):358. PubMed ID: 33228524 [TBL] [Abstract][Full Text] [Related]
13. Rhamnolipids--next generation surfactants? Müller MM; Kügler JH; Henkel M; Gerlitzki M; Hörmann B; Pöhnlein M; Syldatk C; Hausmann R J Biotechnol; 2012 Dec; 162(4):366-80. PubMed ID: 22728388 [TBL] [Abstract][Full Text] [Related]
14. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178 [TBL] [Abstract][Full Text] [Related]
15. Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Correia J; Gudiña EJ; Lazar Z; Janek T; Teixeira JA Appl Microbiol Biotechnol; 2022 Nov; 106(22):7477-7489. PubMed ID: 36222896 [TBL] [Abstract][Full Text] [Related]
16. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Kourmentza C; Costa J; Azevedo Z; Servin C; Grandfils C; De Freitas V; Reis MAM Bioresour Technol; 2018 Jan; 247():829-837. PubMed ID: 30060419 [TBL] [Abstract][Full Text] [Related]
17. Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis. Funston SJ; Tsaousi K; Smyth TJ; Twigg MS; Marchant R; Banat IM Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8443-8454. PubMed ID: 29043376 [TBL] [Abstract][Full Text] [Related]
18. Activity of Sodium Lauryl Sulfate, Rhamnolipids, and Shen Y; Li P; Chen X; Zou Y; Li H; Yuan G; Hu H Microb Drug Resist; 2020 Mar; 26(3):290-299. PubMed ID: 31211651 [TBL] [Abstract][Full Text] [Related]
19. Rhamnolipid biosurfactants: production and their potential in environmental biotechnology. Pornsunthorntawee O; Wongpanit P; Rujiravanit R Adv Exp Med Biol; 2010; 672():211-21. PubMed ID: 20545285 [TBL] [Abstract][Full Text] [Related]
20. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]