These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28065752)

  • 21. Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion.
    Kecskemeti A; Gaspar A
    Talanta; 2017 May; 166():275-283. PubMed ID: 28213235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immobilized trypsin on hydrophobic cellulose decorated nanoparticles shows good stability and reusability for protein digestion.
    Sun X; Cai X; Wang RQ; Xiao J
    Anal Biochem; 2015 May; 477():21-7. PubMed ID: 25700866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and characterization of a novel nanocomposite with double enzymes immobilized on magnetic Fe
    Chen Z; Wang X; Chen Y; Xue Z; Guo Q; Ma Q; Chen H
    Colloids Surf B Biointerfaces; 2018 Sep; 169():280-288. PubMed ID: 29800905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis.
    Naldi M; Černigoj U; Štrancar A; Bartolini M
    Talanta; 2017 May; 167():143-157. PubMed ID: 28340705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis.
    Xu G; Chen X; Hu J; Yang P; Yang D; Wei L
    Analyst; 2012 Jun; 137(12):2757-61. PubMed ID: 22575850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of Penicillium aurantiogriseum protease immobilization on magnetic nanoparticles for antioxidant peptides' obtainment.
    Duarte Neto JMW; Maciel JDC; Campos JF; Carvalho Junior LB; Marques DAV; Lima CA; Porto ALF
    Prep Biochem Biotechnol; 2017 Aug; 47(7):644-654. PubMed ID: 28278110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast microwave-assisted in-tip digestion of proteins.
    Hahn HW; Rainer M; Ringer T; Huck CW; Bonn GK
    J Proteome Res; 2009 Sep; 8(9):4225-30. PubMed ID: 19639939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immobilization of trypsin onto 1,4-diisothiocyanatobenzene-activated porous glass for microreactor-based peptide mapping by capillary electrophoresis: effect of calcium ions on the immobilization procedure.
    Dartiguenave C; Hamad H; Waldron KC
    Anal Chim Acta; 2010 Mar; 663(2):198-205. PubMed ID: 20206011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.
    Tao QL; Li Y; Shi Y; Liu RJ; Zhang YW; Guo J
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6055-60. PubMed ID: 27427671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oriented covalent immobilization of esterase BioH on hydrophilic-modified Fe3O4 nanoparticles.
    Li R; Jiang L; Ye L; Lu J; Yu H
    Biotechnol Appl Biochem; 2014; 61(5):603-10. PubMed ID: 24484544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microscale enzyme reactors comprising gold nanoparticles with immobilized trypsin for efficient protein digestion.
    Safdar M; Spross J; Jänis J
    J Mass Spectrom; 2013 Dec; 48(12):1281-4. PubMed ID: 24338882
    [No Abstract]   [Full Text] [Related]  

  • 32. Synthesis of amine-functionalized Fe
    Lin J; Wen Q; Chen S; Le X; Zhou X; Huang L
    Int J Biol Macromol; 2017 Mar; 96():377-383. PubMed ID: 28013004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immobilization of trypsin on miniature incandescent bulbs for infrared-assisted proteolysis.
    Ge H; Bao H; Zhang L; Chen G
    Anal Chim Acta; 2014 Oct; 845():77-84. PubMed ID: 25201275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Immobilization of Porcine Pancreatic α-Amylase on Amino-Functionalized Magnetite Nanoparticles: Characterization and Stability Evaluation of the Immobilized Enzyme.
    Akhond M; Pashangeh K; Karbalaei-Heidari HR; Absalan G
    Appl Biochem Biotechnol; 2016 Nov; 180(5):954-968. PubMed ID: 27240662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrophilic polydopamine-coated magnetic graphene nanocomposites for highly efficient tryptic immobilization.
    Shi C; Deng C; Li Y; Zhang X; Yang P
    Proteomics; 2014 Jun; 14(12):1457-63. PubMed ID: 24723515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Limited proteolysis in porous membrane reactors containing immobilized trypsin.
    Dong J; Ning W; Liu W; Bruening ML
    Analyst; 2017 Jul; 142(14):2578-2586. PubMed ID: 28607960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Label-free protein quantification after ultrafast digestion of complex proteomes using ultrasonic energy and immobilized-trypsin magnetic nanoparticles.
    Martins G; Fernández-Lodeiro J; Djafari J; Lodeiro C; Capelo JL; Santos HM
    Talanta; 2019 May; 196():262-270. PubMed ID: 30683362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipase-based on starch material as a development matrix with magnetite cross-linked enzyme aggregates and its application.
    Mehde AA; Mehdi WA; Severgün O; Çakar S; Özacar M
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1533-1543. PubMed ID: 30261255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effects of the size of magnetic particles of immobilized enzyme reactors on the digestion performance].
    Zhang J; Zhou L; Tian F; Zhang Y; Qian X
    Se Pu; 2013 Feb; 31(2):102-10. PubMed ID: 23697172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrophilic spacer-arm containing magnetic nanoparticles for immobilization of proteinase K: Employment for speciation of proteins for mass spectrometry-based analysis.
    Bayramoglu G; Kayili HM; Oztekin M; Salih B; Arica MY
    Talanta; 2020 Jan; 206():120218. PubMed ID: 31514867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.