These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 28065773)
1. Using the Electronic Medical Record to Identify Patients at High Risk for Frequent Emergency Department Visits and High System Costs. Frost DW; Vembu S; Wang J; Tu K; Morris Q; Abrams HB Am J Med; 2017 May; 130(5):601.e17-601.e22. PubMed ID: 28065773 [TBL] [Abstract][Full Text] [Related]
2. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
3. Pediatric emergency department overcrowding: electronic medical record for identification of frequent, lower acuity visitors. Can we effectively identify patients for enhanced resource utilization? Simon HK; Hirsh DA; Rogers AJ; Massey R; Deguzman MA J Emerg Med; 2009 Apr; 36(3):311-6. PubMed ID: 18657929 [TBL] [Abstract][Full Text] [Related]
4. Predicting frequent emergency department use among children with epilepsy: A retrospective cohort study using electronic health data from 2 centers. Grinspan ZM; Patel AD; Hafeez B; Abramson EL; Kern LM Epilepsia; 2018 Jan; 59(1):155-169. PubMed ID: 29143960 [TBL] [Abstract][Full Text] [Related]
5. Predicting Emergency Visits and Hospital Admissions During Radiation and Chemoradiation: An Internally Validated Pretreatment Machine Learning Algorithm. Hong JC; Niedzwiecki D; Palta M; Tenenbaum JD JCO Clin Cancer Inform; 2018 Dec; 2():1-11. PubMed ID: 30652595 [TBL] [Abstract][Full Text] [Related]
6. Predicting frequent emergency department visits among children with asthma using EHR data. Das LT; Abramson EL; Stone AE; Kondrich JE; Kern LM; Grinspan ZM Pediatr Pulmonol; 2017 Jul; 52(7):880-890. PubMed ID: 28557381 [TBL] [Abstract][Full Text] [Related]
7. Social and medical vulnerability factors of emergency department frequent users in a universal health insurance system. Bieler G; Paroz S; Faouzi M; Trueb L; Vaucher P; Althaus F; Daeppen JB; Bodenmann P Acad Emerg Med; 2012 Jan; 19(1):63-8. PubMed ID: 22221292 [TBL] [Abstract][Full Text] [Related]
8. Analysis of costs, length of stay, and utilization of emergency department services by frequent users: implications for health policy. Ruger JP; Richter CJ; Spitznagel EL; Lewis LM Acad Emerg Med; 2004 Dec; 11(12):1311-7. PubMed ID: 15576522 [TBL] [Abstract][Full Text] [Related]
9. FAM-FACE-SG: a score for risk stratification of frequent hospital admitters. Low LL; Liu N; Lee KH; Ong ME; Wang S; Jing X; Thumboo J BMC Med Inform Decis Mak; 2017 Apr; 17(1):35. PubMed ID: 28390405 [TBL] [Abstract][Full Text] [Related]
11. Derivation and validation of a machine learning record linkage algorithm between emergency medical services and the emergency department. Redfield C; Tlimat A; Halpern Y; Schoenfeld DW; Ullman E; Sontag DA; Nathanson LA; Horng S J Am Med Inform Assoc; 2020 Jan; 27(1):147-153. PubMed ID: 31605488 [TBL] [Abstract][Full Text] [Related]
13. Characteristics and Admission Preferences of Pediatric Emergency Patients and Their Waiting Time Prediction Using Electronic Medical Record Data: Retrospective Comparative Analysis. Guo LL; Guo LY; Li J; Gu YW; Wang JY; Cui Y; Qian Q; Chen T; Jiang R; Zheng S J Med Internet Res; 2023 Nov; 25():e49605. PubMed ID: 37910168 [TBL] [Abstract][Full Text] [Related]
14. Machine learning to improve frequent emergency department use prediction: a retrospective cohort study. Chiu YM; Courteau J; Dufour I; Vanasse A; Hudon C Sci Rep; 2023 Feb; 13(1):1981. PubMed ID: 36737625 [TBL] [Abstract][Full Text] [Related]
15. Resource utilization and health care charges associated with the most frequent ED users. Ondler C; Hegde GG; Carlson JN Am J Emerg Med; 2014 Oct; 32(10):1215-9. PubMed ID: 25154348 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning Applied to Electronic Health Records: Identification of Chemotherapy Patients at High Risk for Preventable Emergency Department Visits and Hospital Admissions. Peterson DJ; Ostberg NP; Blayney DW; Brooks JD; Hernandez-Boussard T JCO Clin Cancer Inform; 2021 Oct; 5():1106-1126. PubMed ID: 34752139 [TBL] [Abstract][Full Text] [Related]
17. A practical method for predicting frequent use of emergency department care using routinely available electronic registration data. Wu J; Grannis SJ; Xu H; Finnell JT BMC Emerg Med; 2016 Feb; 16():12. PubMed ID: 26860825 [TBL] [Abstract][Full Text] [Related]
18. Admission Data Predict High Hospital Readmission Risk. Logue E; Smucker W; Regan C J Am Board Fam Med; 2016; 29(1):50-9. PubMed ID: 26769877 [TBL] [Abstract][Full Text] [Related]
19. Predictive Modeling of 30-Day Emergency Hospital Transport of Patients Using a Personal Emergency Response System: Prognostic Retrospective Study. Op den Buijs J; Simons M; Golas S; Fischer N; Felsted J; Schertzer L; Agboola S; Kvedar J; Jethwani K JMIR Med Inform; 2018 Nov; 6(4):e49. PubMed ID: 30482741 [TBL] [Abstract][Full Text] [Related]
20. Contribution of preventable acute care spending to total spending for high-cost Medicare patients. Joynt KE; Gawande AA; Orav EJ; Jha AK JAMA; 2013 Jun; 309(24):2572-8. PubMed ID: 23797716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]