These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 28065836)

  • 1. Learning effective connectivity from fMRI using autoregressive hidden Markov model with missing data.
    Dang S; Chaudhury S; Lall B; Roy PK
    J Neurosci Methods; 2017 Feb; 278():87-100. PubMed ID: 28065836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamic programming high-order Dynamic Bayesian Networks learning for identifying effective connectivity in human brain from fMRI.
    Dang S; Chaudhury S; Lall B; Roy PK
    J Neurosci Methods; 2017 Jun; 285():33-44. PubMed ID: 28495368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A graphical approach for evaluating effective connectivity in neural systems.
    Eichler M
    Philos Trans R Soc Lond B Biol Sci; 2005 May; 360(1457):953-67. PubMed ID: 16087440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting clinical symptoms of attention deficit hyperactivity disorder based on temporal patterns between and within intrinsic connectivity networks.
    Wang XH; Jiao Y; Li L
    Neuroscience; 2017 Oct; 362():60-69. PubMed ID: 28843999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpreting temporal fluctuations in resting-state functional connectivity MRI.
    Liégeois R; Laumann TO; Snyder AZ; Zhou J; Yeo BTT
    Neuroimage; 2017 Dec; 163():437-455. PubMed ID: 28916180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BrainNET: Inference of Brain Network Topology Using Machine Learning.
    Murugesan GK; Ganesh C; Nalawade S; Davenport EM; Wagner B; Kim WH; Maldjian JA
    Brain Connect; 2020 Oct; 10(8):422-435. PubMed ID: 33030350
    [No Abstract]   [Full Text] [Related]  

  • 8. A spectral sampling algorithm in dynamic causal modelling for resting-state fMRI.
    Xie Y; Zhang P; Zhao J
    Hum Brain Mapp; 2023 Jun; 44(8):2981-2992. PubMed ID: 36929686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: Group-level validation using benchmark data, neurophysiological models and human connectome project data.
    Ryali S; Chen T; Supekar K; Tu T; Kochalka J; Cai W; Menon V
    J Neurosci Methods; 2016 Aug; 268():142-53. PubMed ID: 27015792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion of fMRI and non-imaging data for ADHD classification.
    Riaz A; Asad M; Alonso E; Slabaugh G
    Comput Med Imaging Graph; 2018 Apr; 65():115-128. PubMed ID: 29137838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mpdcm: A toolbox for massively parallel dynamic causal modeling.
    Aponte EA; Raman S; Sengupta B; Penny WD; Stephan KE; Heinzle J
    J Neurosci Methods; 2016 Jan; 257():7-16. PubMed ID: 26384541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A validation of dynamic causal modelling for 7T fMRI.
    Tak S; Noh J; Cheong C; Zeidman P; Razi A; Penny WD; Friston KJ
    J Neurosci Methods; 2018 Jul; 305():36-45. PubMed ID: 29758234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.
    Sojoudi A; Goodyear BG
    Hum Brain Mapp; 2016 Dec; 37(12):4566-4580. PubMed ID: 27464464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered attention networks in benign childhood epilepsy with centrotemporal spikes (BECTS): A resting-state fMRI study.
    Xiao F; Li L; An D; Lei D; Tang Y; Yang T; Ren J; Chen S; Huang X; Gong Q; Zhou D
    Epilepsy Behav; 2015 Apr; 45():234-41. PubMed ID: 25825370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-Dependent Effective Connectivity in Resting-State fMRI.
    Park HJ; Eo J; Pae C; Son J; Park SM; Kang J
    Front Neural Circuits; 2021; 15():719364. PubMed ID: 34776875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimensionality reduction impedes the extraction of dynamic functional connectivity states from fMRI recordings of resting wakefulness.
    Kafashan M; Palanca BJA; Ching S
    J Neurosci Methods; 2018 Jan; 293():151-161. PubMed ID: 28947263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Default mode network activity and neuropsychological profile in male children and adolescents with attention deficit hyperactivity disorder and conduct disorder.
    Uytun MC; Karakaya E; Oztop DB; Gengec S; Gumus K; Ozmen S; Doğanay S; Icer S; Demirci E; Ozsoy SD
    Brain Imaging Behav; 2017 Dec; 11(6):1561-1570. PubMed ID: 27738997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latent resting-state network dynamics in boys and girls with attention-deficit/hyperactivity disorder.
    Scofield JE; Johnson JD; Wood PK; Geary DC
    PLoS One; 2019; 14(6):e0218891. PubMed ID: 31251765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.
    Faisan S; Thoraval L; Armspach JP; Foucher JR; Metz-Lutz MN; Heitz F
    Acad Radiol; 2005 Jan; 12(1):25-36. PubMed ID: 15691723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.