These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28066170)

  • 1. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
    Li S; Li J; Li Z
    Front Neurosci; 2016; 10():587. PubMed ID: 28066170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training in Use of Brain-Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements.
    Fukuma R; Yanagisawa T; Yokoi H; Hirata M; Yoshimine T; Saitoh Y; Kamitani Y; Kishima H
    Front Neurosci; 2018; 12():478. PubMed ID: 30050405
    [No Abstract]   [Full Text] [Related]  

  • 4. Shared Prosthetic Control Based on Multiple Movement Intent Decoders.
    Dantas H; Hansen TC; Warren DJ; Mathews VJ
    IEEE Trans Biomed Eng; 2021 May; 68(5):1547-1556. PubMed ID: 33326374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unscented Kalman filter for brain-machine interfaces.
    Li Z; O'Doherty JE; Hanson TL; Lebedev MA; Henriquez CS; Nicolelis MA
    PLoS One; 2009 Jul; 4(7):e6243. PubMed ID: 19603074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-silico development and assessment of a Kalman filter motor decoder for prosthetic hand control.
    Gamal M; Mousa MH; Eldawlatly S; Elbasiouny SM
    Comput Biol Med; 2021 May; 132():104353. PubMed ID: 33831814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower-limb kinematic reconstruction during pedaling tasks from EEG signals using Unscented Kalman filter.
    Blanco-Díaz CF; Guerrero-Mendez CD; Delisle-Rodriguez D; de Souza AF; Badue C; Bastos-Filho TF
    Comput Methods Biomech Biomed Engin; 2024 May; 27(7):867-877. PubMed ID: 37129900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison of Intention Estimation Methods for Decoder Calibration in Intracortical Brain-Computer Interfaces.
    Willett FR; Murphy BA; Young DR; Memberg WD; Blabe CH; Pandarinath C; Franco B; Saab J; Walter BL; Sweet JA; Miller JP; Henderson JM; Shenoy KV; Simeral JD; Jarosiewicz B; Hochberg LR; Kirsch RF; Ajiboye AB
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2066-2078. PubMed ID: 29989927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter.
    Vaskov AK; Irwin ZT; Nason SR; Vu PP; Nu CS; Bullard AJ; Hill M; North N; Patil PG; Chestek CA
    Front Neurosci; 2018; 12():751. PubMed ID: 30455621
    [No Abstract]   [Full Text] [Related]  

  • 10. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.
    Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements.
    Aggarwal V; Mollazadeh M; Davidson AG; Schieber MH; Thakor NV
    J Neurophysiol; 2013 Jun; 109(12):3067-81. PubMed ID: 23536714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography.
    Trieu Phat Luu ; Yongtian He ; Nakagame S; Gorges J; Nathan K; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1548-1551. PubMed ID: 28268622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closed-loop neural control of cursor motion using a Kalman filter.
    Wu W; Shaikhouni A; Donoghue JP; Black MJ
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4126-9. PubMed ID: 17271209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distance- and speed-informed kinematics decoding improves M/EEG based upper-limb movement decoder accuracy.
    Kobler RJ; Sburlea AI; Mondini V; Hirata M; Müller-Putz GR
    J Neural Eng; 2020 Nov; 17(5):056027. PubMed ID: 33146148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive neuron-to-EMG decoder training for FES neuroprostheses.
    Ethier C; Acuna D; Solla SA; Miller LE
    J Neural Eng; 2016 Aug; 13(4):046009. PubMed ID: 27247280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding Lower Limb Muscle Activity and Kinematics from Cortical Neural Spike Trains during Monkey Performing Stand and Squat Movements.
    Ma X; Ma C; Huang J; Zhang P; Xu J; He J
    Front Neurosci; 2017; 11():44. PubMed ID: 28223914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a non-invasive, real-time, human-in-the-loop model of intracortical brain-computer interfaces.
    Awasthi P; Lin TH; Bae J; Miller LE; Danziger ZC
    J Neural Eng; 2022 Oct; 19(5):. PubMed ID: 36198278
    [No Abstract]   [Full Text] [Related]  

  • 19. A brain-machine interface enables bimanual arm movements in monkeys.
    Ifft PJ; Shokur S; Li Z; Lebedev MA; Nicolelis MA
    Sci Transl Med; 2013 Nov; 5(210):210ra154. PubMed ID: 24197735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.
    Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM
    Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.