These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 28066190)

  • 21. Development of Activity in the Mouse Visual Cortex.
    Shen J; Colonnese MT
    J Neurosci; 2016 Nov; 36(48):12259-12275. PubMed ID: 27903733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
    Steriade M
    Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes.
    Burikov AA; Bereshpolova YuI
    Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasticity of brain wave network interactions and evolution across physiologic states.
    Liu KK; Bartsch RP; Lin A; Mantegna RN; Ivanov PCh
    Front Neural Circuits; 2015; 9():62. PubMed ID: 26578891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complex propagation patterns characterize human cortical activity during slow-wave sleep.
    Hangya B; Tihanyi BT; Entz L; Fabó D; Erőss L; Wittner L; Jakus R; Varga V; Freund TF; Ulbert I
    J Neurosci; 2011 Jun; 31(24):8770-9. PubMed ID: 21677161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia-recipient and cerebellar-recipient zones of the motor thalamus.
    Nakamura KC; Sharott A; Magill PJ
    Cereb Cortex; 2014 Jan; 24(1):81-97. PubMed ID: 23042738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Case of the Disappearing Spindle Burst.
    Tiriac A; Blumberg MS
    Neural Plast; 2016; 2016():8037321. PubMed ID: 27119028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early patterns of electrical activity in the developing cerebral cortex of humans and rodents.
    Khazipov R; Luhmann HJ
    Trends Neurosci; 2006 Jul; 29(7):414-418. PubMed ID: 16713634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex.
    An S; Kilb W; Luhmann HJ
    J Neurosci; 2014 Aug; 34(33):10870-83. PubMed ID: 25122889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spontaneous activity in developing thalamic and cortical sensory networks.
    Martini FJ; Guillamón-Vivancos T; Moreno-Juan V; Valdeolmillos M; López-Bendito G
    Neuron; 2021 Aug; 109(16):2519-2534. PubMed ID: 34293296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sleep orchestrates indices of local plasticity and global network stability in the human cortex.
    Maier JG; Kuhn M; Mainberger F; Nachtsheim K; Guo S; Bucsenez U; Feige B; Mikutta C; Spiegelhalder K; Klöppel S; Normann C; Riemann D; Nissen C
    Sleep; 2019 Apr; 42(4):. PubMed ID: 30590809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans.
    Riedner BA; Vyazovskiy VV; Huber R; Massimini M; Esser S; Murphy M; Tononi G
    Sleep; 2007 Dec; 30(12):1643-57. PubMed ID: 18246974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mediating role of cortical thickness and gray matter volume on sleep slow-wave activity during adolescence.
    Goldstone A; Willoughby AR; de Zambotti M; Franzen PL; Kwon D; Pohl KM; Pfefferbaum A; Sullivan EV; Müller-Oehring EM; Prouty DE; Hasler BP; Clark DB; Colrain IM; Baker FC
    Brain Struct Funct; 2018 Mar; 223(2):669-685. PubMed ID: 28913599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated technology for evaluation of brain function and neural plasticity.
    Rossini PM; Dal Forno G
    Phys Med Rehabil Clin N Am; 2004 Feb; 15(1):263-306. PubMed ID: 15029909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coherent oscillations and short-term plasticity in corticothalamic networks.
    Steriade M
    Trends Neurosci; 1999 Aug; 22(8):337-45. PubMed ID: 10407416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human brain plasticity: evidence from sensory deprivation and altered language experience.
    Neville H; Bavelier D
    Prog Brain Res; 2002; 138():177-88. PubMed ID: 12432770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptic transmission and plasticity in an active cortical network.
    Reig R; Sanchez-Vives MV
    PLoS One; 2007 Aug; 2(7):e670. PubMed ID: 17668052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development.
    Joechner AK; Hahn MA; Gruber G; Hoedlmoser K; Werkle-Bergner M
    Elife; 2023 Nov; 12():. PubMed ID: 37999945
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.