BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28066380)

  • 1. Dynamics in the Strawberry Rhizosphere Microbiome in Response to Biochar and
    De Tender C; Haegeman A; Vandecasteele B; Clement L; Cremelie P; Dawyndt P; Maes M; Debode J
    Front Microbiol; 2016; 7():2062. PubMed ID: 28066380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochar-Enhanced Resistance to
    De Tender C; Vandecasteele B; Verstraeten B; Ommeslag S; Kyndt T; Debode J
    Front Plant Sci; 2021; 12():700479. PubMed ID: 34497619
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Debode J; De Tender C; Cremelie P; Lee AS; Kyndt T; Muylle H; De Swaef T; Vandecasteele B
    Front Plant Sci; 2018; 9():213. PubMed ID: 29515613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance.
    Rupp S; Plesken C; Rumsey S; Dowling M; Schnabel G; Weber RWS; Hahn M
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235878
    [No Abstract]   [Full Text] [Related]  

  • 5. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere.
    Kolton M; Graber ER; Tsehansky L; Elad Y; Cytryn E
    New Phytol; 2017 Feb; 213(3):1393-1404. PubMed ID: 27780299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production.
    Qin X; Xiao H; Cheng X; Zhou H; Si L
    Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the microbiome assembly during different growth stages and storage of strawberry plants.
    Olimi E; Kusstatscher P; Wicaksono WA; Abdelfattah A; Cernava T; Berg G
    Environ Microbiome; 2022 Apr; 17(1):21. PubMed ID: 35484554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First Report of Fludioxonil Resistance in Botrytis cinerea, the Causal Agent of Gray Mold, from Strawberry Fields in Maryland and South Carolina.
    Fernández-Ortuño D; Grabke A; Bryson PK; Rouse RJ; Rollins P; Schnabel G
    Plant Dis; 2014 May; 98(5):692. PubMed ID: 30708511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial community composition of vermicompost-treated tomato rhizospheres.
    Munoz-Ucros J; Panke-Buisse K; Robe J
    PLoS One; 2020; 15(4):e0230577. PubMed ID: 32251438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees.
    Beckers B; Op De Beeck M; Weyens N; Boerjan W; Vangronsveld J
    Microbiome; 2017 Feb; 5(1):25. PubMed ID: 28231859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of above ground pathogen infection and fungicide application on the root-associated microbiota of apple saplings.
    Becker MF; Klueken AM; Knief C
    Environ Microbiome; 2023 May; 18(1):43. PubMed ID: 37245023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochar Amendment Stimulates Utilization of Plant-Derived Carbon by Soil Bacteria in an Intercropping System.
    Liao H; Li Y; Yao H
    Front Microbiol; 2019; 10():1361. PubMed ID: 31316475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria.
    Egamberdieva D; Wirth S; Behrendt U; Abd Allah EF; Berg G
    Front Microbiol; 2016; 7():209. PubMed ID: 26941730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon modification improves biochar's ability to mitigate cadmium toxicity in tomato by enhancing root colonization of plant-beneficial bacteria.
    Jin X; Rahman MKU; Ma C; Zheng X; Wu F; Zhou X
    Ecotoxicol Environ Saf; 2023 Jan; 249():114407. PubMed ID: 36508786
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Yang P; Zhao Z; Virag A; Becker T; Zhao L; Liu W; Xia Y
    Bio Protoc; 2023 Oct; 13(20):e4859. PubMed ID: 37900101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources of Primary Inoculum of Botrytis cinerea and Their Impact on Fungicide Resistance Development in Commercial Strawberry Fields.
    Oliveira MS; Amiri A; Zuniga AI; Peres NA
    Plant Dis; 2017 Oct; 101(10):1761-1768. PubMed ID: 30676923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar stimulates tomato roots to recruit a bacterial assemblage contributing to disease resistance against
    Jin X; Bai Y; Khashi U Rahman M; Kang X; Pan K; Wu F; Pommier T; Zhou X; Wei Z
    Imeta; 2022 Sep; 1(3):e37. PubMed ID: 38868709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of antagonists for the biocontrol of the postharvest wound pathogen Botrytis cinerea on strawberry fruits.
    Guinebretiere MH; Nguyen-The C; Morrison N; Reich M; Nicot P
    J Food Prot; 2000 Mar; 63(3):386-94. PubMed ID: 10716570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Analysis of the Microbial Community Structures Between Healthy and Anthracnose-Infected Strawberry Rhizosphere Soils Using Illumina Sequencing Technology in Yunnan Province, Southwest of China.
    Su D; Chen S; Zhou W; Yang J; Luo Z; Zhang Z; Tian Y; Dong Q; Shen X; Wei S; Tong J; Cui X
    Front Microbiol; 2022; 13():881450. PubMed ID: 35651487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic Variation of
    Meng L; Mestdagh H; Ameye M; Audenaert K; Höfte M; Van Labeke MC
    Front Plant Sci; 2020; 11():1233. PubMed ID: 32903526
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.