These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28066467)

  • 1. Rubber Trees Demonstrate a Clear Retranslocation Under Seasonal Drought and Cold Stresses.
    Li Y; Lan G; Xia Y
    Front Plant Sci; 2016; 7():1907. PubMed ID: 28066467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment.
    Fife DN; Nambiar EK; Saur E
    Tree Physiol; 2008 Feb; 28(2):187-96. PubMed ID: 18055429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient retranslocation in temperate conifers.
    Sadanandan Nambiar EK; Fife DN
    Tree Physiol; 1991; 9(1_2):185-207. PubMed ID: 14972864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Foliar and Ground-Applied Essential Nutrients on Huanglongbing-Affected Mature Citrus Trees.
    Atta AA; Morgan KT; Kadyampakeni DM; Mahmoud KA
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34066426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foliar nutrient retranslocation in Eucalyptus globulus.
    Saur E; Nambiar EK; Fife DN
    Tree Physiol; 2000 Oct; 20(16):1105-12. PubMed ID: 11269962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought.
    Marchin R; Zeng H; Hoffmann W
    Oecologia; 2010 Aug; 163(4):845-54. PubMed ID: 20364272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency.
    Estiarte M; Peñuelas J
    Glob Chang Biol; 2015 Mar; 21(3):1005-17. PubMed ID: 25384459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water loss regulation in mature Hevea brasiliensis: effects of intermittent drought in the rainy season and hydraulic regulation.
    Isarangkool Na Ayutthaya S; Do FC; Pannangpetch K; Junjittakarn J; Maeght JL; Rocheteau A; Cochard H
    Tree Physiol; 2011 Jul; 31(7):751-62. PubMed ID: 21746745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf nutrient resorption of two life-form tree species in urban gardens and their response to soil nutrient availability.
    Hu R; Liu T; Zhang Y; Zheng R; Guo J
    PeerJ; 2023; 11():e15738. PubMed ID: 37483974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal nutrient dynamics in white pine and white spruce in response to environmental manipulation.
    Munson AD; Margolis HA; Brand DG
    Tree Physiol; 1995 Mar; 15(3):141-9. PubMed ID: 14965969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of Nutrients and Leaf Mass in Central Himalayan Forest Trees and Shrubs.
    Ralhan PK; Singh SP
    Ecology; 1987 Dec; 68(6):1974-1983. PubMed ID: 29357150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of wood and leaf traits related to hydraulic efficiency and safety is linked to evaporative demand and not soil moisture in rubber (Hevea brasiliensis).
    Waite PA; Leuschner C; Delzon S; Triadiati T; Saad A; Schuldt B
    Tree Physiol; 2023 Dec; 43(12):2131-2149. PubMed ID: 37707940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf nutrient variation in mature carob (Ceratonia siliqua) trees in response to irrigation and fertilization.
    Correia PJ; Martins-Loução MA
    Tree Physiol; 1997 Dec; 17(12):813-9. PubMed ID: 14759891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand.
    Ishida A; Diloksumpun S; Ladpala P; Staporn D; Panuthai S; Gamo M; Yazaki K; Ishizuka M; Puangchit L
    Tree Physiol; 2006 May; 26(5):643-56. PubMed ID: 16452078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reproductive performance of the Mupli beetle, Luprops tristis, in relation to leaf age of the para rubber tree, Hevea brasiliensis.
    Sabu TK; Nirdev PM; Aswathi P
    J Insect Sci; 2014 Jan; 14():12. PubMed ID: 25373159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is iron phloem mobile during senescence in trees? A reinvestigation of Rissmüller's finding of 1874.
    Shi R; Bässler R; Zou C; Römheld V
    Plant Physiol Biochem; 2011 May; 49(5):489-93. PubMed ID: 21486699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Litter nutrients and retranslocation in a central African rain forest dominated by ectomycorrhizal trees.
    Chuyong GB; Newbery DM; Songwe NC
    New Phytol; 2000 Dec; 148(3):493-510. PubMed ID: 33863026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil quality assessment of different Hevea brasiliensis plantations in tropical China.
    Zou X; Zhu X; Zhu P; Singh AK; Zakari S; Yang B; Chen C; Liu W
    J Environ Manage; 2021 May; 285():112147. PubMed ID: 33607560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of nutritional impairment in carbon-water balance of silver fir drought-induced dieback.
    González de Andrés E; Gazol A; Querejeta JI; Igual JM; Colangelo M; Sánchez-Salguero R; Linares JC; Camarero JJ
    Glob Chang Biol; 2022 Jul; 28(14):4439-4458. PubMed ID: 35320604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings.
    Parraga-Aguado I; Querejeta JI; González-Alcaraz MN; Conesa HM
    Sci Total Environ; 2014 Jul; 485-486():406-414. PubMed ID: 24742549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.