These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28066487)

  • 1. Superior Root Hair Formation Confers Root Efficiency in Some, But Not All, Rice Genotypes upon P Deficiency.
    Nestler J; Wissuwa M
    Front Plant Sci; 2016; 7():1935. PubMed ID: 28066487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions.
    Nestler J; Keyes SD; Wissuwa M
    J Exp Bot; 2016 Jun; 67(12):3699-708. PubMed ID: 26976815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotypic differences in the presence of hairs on roots and gynophores of peanuts (Arachis hypogaea L.) and their significance for phosphorus uptake.
    Wissuwa M; Ae N
    J Exp Bot; 2001 Aug; 52(361):1703-10. PubMed ID: 11479336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.
    Haling RE; Brown LK; Bengough AG; Young IM; Hallett PD; White PJ; George TS
    J Exp Bot; 2013 Sep; 64(12):3711-21. PubMed ID: 23861547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of root size versus root efficiency in phosphorus acquisition in rice.
    Mori A; Fukuda T; Vejchasarn P; Nestler J; Pariasca-Tanaka J; Wissuwa M
    J Exp Bot; 2016 Feb; 67(4):1179-89. PubMed ID: 26842979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting development of lysigenous aerenchyma in two rice genotypes under phosphorus deficiency.
    Pujol V; Wissuwa M
    BMC Res Notes; 2018 Jan; 11(1):60. PubMed ID: 29357942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous nutrient supply promotes maize growth and phosphorus acquisition: additive and compensatory effects of lateral roots and root hairs.
    Wang L; Li X; Mang M; Ludewig U; Shen J
    Ann Bot; 2021 Sep; 128(4):431-440. PubMed ID: 34309655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root hair length and rhizosheath mass depend on soil porosity, strength and water content in barley genotypes.
    Haling RE; Brown LK; Bengough AG; Valentine TA; White PJ; Young IM; George TS
    Planta; 2014 Mar; 239(3):643-51. PubMed ID: 24318401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition.
    Bates TR; Lynch JP
    Am J Bot; 2000 Jul; 87(7):964-70. PubMed ID: 10898773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Variability in Phosphorus Responses of Rice Root Phenotypes.
    Vejchasarn P; Lynch JP; Brown KM
    Rice (N Y); 2016 Dec; 9(1):29. PubMed ID: 27294384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vigorous Root Growth Is a Better Indicator of Early Nutrient Uptake than Root Hair Traits in Spring Wheat Grown under Low Fertility.
    Wang Y; Thorup-Kristensen K; Jensen LS; Magid J
    Front Plant Sci; 2016; 7():865. PubMed ID: 27379145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of root hairs in water uptake: recent advances and future perspectives.
    Cai G; Ahmed MA
    J Exp Bot; 2022 Jun; 73(11):3330-3338. PubMed ID: 35323893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana.
    Stetter MG; Schmid K; Ludewig U
    PLoS One; 2015; 10(3):e0120604. PubMed ID: 25781967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmentally induced plasticity of root hair development in Arabidopsis.
    Müller M; Schmidt W
    Plant Physiol; 2004 Jan; 134(1):409-19. PubMed ID: 14730071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].
    Cao X; Xia RX; Zhang DJ; Shu B
    Ying Yong Sheng Tai Xue Bao; 2013 Jun; 24(6):1525-30. PubMed ID: 24066535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic variation of root-system architecture under high P and low P conditions in potato (Solanum tuberosum L.).
    Kirchgesser J; Hazarika M; Bachmann-Pfabe S; Dehmer KJ; Kavka M; Uptmoor R
    BMC Plant Biol; 2023 Feb; 23(1):68. PubMed ID: 36721096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Morphophysiological Analyses and Molecular Profiling Reveal Pi-Efficient Strategies of a Traditional Rice Genotype.
    Mehra P; Pandey BK; Giri J
    Front Plant Sci; 2015; 6():1184. PubMed ID: 26779218
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Zhang Z; Zhu L; Li D; Wang N; Sun H; Zhang Y; Zhang K; Li A; Bai Z; Li C; Liu L
    Front Plant Sci; 2021; 12():716691. PubMed ID: 34527012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic model of nutrient uptake by root hairs.
    Leitner D; Klepsch S; Ptashnyk M; Marchant A; Kirk GJ; Schnepf A; Roose T
    New Phytol; 2010 Feb; 185(3):792-802. PubMed ID: 20028467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-Benefit Analysis of the Upland-Rice Root Architecture in Relation to Phosphate: 3D Simulations Highlight the Importance of S-Type Lateral Roots for Reducing the Pay-Off Time.
    Gonzalez D; Postma J; Wissuwa M
    Front Plant Sci; 2021; 12():641835. PubMed ID: 33777076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.