These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 28066511)
1. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Gumisiriza R; Hawumba JF; Okure M; Hensel O Biotechnol Biofuels; 2017; 10():11. PubMed ID: 28066511 [TBL] [Abstract][Full Text] [Related]
2. Technological options for the management of biosolids. Wang H; Brown SL; Magesan GN; Slade AH; Quintern M; Clinton PW; Payn TW Environ Sci Pollut Res Int; 2008 Jun; 15(4):308-17. PubMed ID: 18488261 [TBL] [Abstract][Full Text] [Related]
3. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review. Rasheed T; Anwar MT; Ahmad N; Sher F; Khan SU; Ahmad A; Khan R; Wazeer I J Environ Manage; 2021 Jun; 287():112257. PubMed ID: 33690013 [TBL] [Abstract][Full Text] [Related]
4. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
5. Decentralized energy from portable biogas digesters using domestic kitchen waste: A review. Ajay CM; Mohan S; Dinesha P Waste Manag; 2021 Apr; 125():10-26. PubMed ID: 33667979 [TBL] [Abstract][Full Text] [Related]
6. Technological advancements in valorisation of industrial effluents employing hydrothermal liquefaction of biomass: Strategic innovations, barriers and perspectives. Rout PR; Goel M; Pandey DS; Briggs C; Sundramurthy VP; Halder N; Mohanty A; Mukherjee S; Varjani S Environ Pollut; 2023 Jan; 316(Pt 2):120667. PubMed ID: 36395914 [TBL] [Abstract][Full Text] [Related]
7. Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers. Redondo-Gómez C; Rodríguez Quesada M; Vallejo Astúa S; Murillo Zamora JP; Lopretti M; Vega-Baudrit JR Molecules; 2020 Aug; 25(17):. PubMed ID: 32842473 [TBL] [Abstract][Full Text] [Related]
8. A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development. Alaedini AH; Tourani HK; Saidi M J Environ Manage; 2023 Mar; 329():117077. PubMed ID: 36565498 [TBL] [Abstract][Full Text] [Related]
9. A technical review of bioenergy and resource recovery from municipal solid waste. Nanda S; Berruti F J Hazard Mater; 2021 Feb; 403():123970. PubMed ID: 33265011 [TBL] [Abstract][Full Text] [Related]
10. Food waste-to-energy conversion technologies: current status and future directions. Pham TP; Kaushik R; Parshetti GK; Mahmood R; Balasubramanian R Waste Manag; 2015 Apr; 38():399-408. PubMed ID: 25555663 [TBL] [Abstract][Full Text] [Related]
11. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Lombardi L; Carnevale E; Corti A Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103 [TBL] [Abstract][Full Text] [Related]
12. Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Zhu Y; Luan Y; Zhao Y; Liu J; Duan Z; Ruan R Foods; 2023 May; 12(10):. PubMed ID: 37238767 [TBL] [Abstract][Full Text] [Related]
13. Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation. Leong YK; Chen WH; Lee DJ; Chang JS J Hazard Mater; 2021 Sep; 418():126278. PubMed ID: 34098259 [TBL] [Abstract][Full Text] [Related]
14. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Sharma S; Basu S; Shetti NP; Aminabhavi TM Sci Total Environ; 2020 Apr; 713():136633. PubMed ID: 32019020 [TBL] [Abstract][Full Text] [Related]
15. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Pang S Biotechnol Adv; 2019; 37(4):589-597. PubMed ID: 30447327 [TBL] [Abstract][Full Text] [Related]
16. Sustainable processing of algal biomass for a comprehensive biorefinery. Javed MU; Mukhtar H; Hayat MT; Rashid U; Mumtaz MW; Ngamcharussrivichai C J Biotechnol; 2022 Jun; 352():47-58. PubMed ID: 35613647 [TBL] [Abstract][Full Text] [Related]
17. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952 [TBL] [Abstract][Full Text] [Related]
18. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines. Marculescu C; Cenuşă V; Alexe F Waste Manag; 2016 Jan; 47(Pt A):133-40. PubMed ID: 26164851 [TBL] [Abstract][Full Text] [Related]
19. Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge. Gottumukkala LD; Haigh K; Collard FX; van Rensburg E; Görgens J Bioresour Technol; 2016 Sep; 215():37-49. PubMed ID: 27080100 [TBL] [Abstract][Full Text] [Related]