These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28066544)

  • 1. Controlling deposition of nanoparticles by tuning surface charge of SiO
    Eklöf J; Gschneidtner T; Lara-Avila S; Nygård K; Moth-Poulsen K
    RSC Adv; 2016 Nov; 6(106):104246-104253. PubMed ID: 28066544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear charge regulation for the deposition of silica nanoparticles on polystyrene spherical surfaces.
    Choi S; Vazquez-Duhalt R; Graeve OA
    J Colloid Interface Sci; 2022 May; 613():747-763. PubMed ID: 35066233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO).
    Montes Ruiz-Cabello FJ; Maroni P; Borkovec M
    J Chem Phys; 2013 Jun; 138(23):234705. PubMed ID: 23802974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Appropriate salt concentration of nanodiamond colloids for electrostatic self-assembly seeding of monosized individual diamond nanoparticles on silicon dioxide surfaces.
    Yoshikawa T; Zuerbig V; Gao F; Hoffmann R; Nebel CE; Ambacher O; Lebedev V
    Langmuir; 2015 May; 31(19):5319-25. PubMed ID: 25936368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation and Stabilization of Colloidal Spheroids by Oppositely Charged Spherical Nanoparticles.
    Upendar S; Mani E; Basavaraj MG
    Langmuir; 2018 Jun; 34(22):6511-6521. PubMed ID: 29758160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between Electrostatic and Hydration Forces on Silica and Gibbsite Surfaces: An Atomic Force Microscopy Study.
    Klaassen A; Liu F; Mugele F; Siretanu I
    Langmuir; 2022 Jan; 38(3):914-926. PubMed ID: 35025512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of the colloidal interaction between smectite clay nanoparticles in liquid water.
    Shen X; Bourg IC
    J Colloid Interface Sci; 2021 Feb; 584():610-621. PubMed ID: 33223241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forces between silica particles in the presence of multivalent cations.
    Valmacco V; Elzbieciak-Wodka M; Herman D; Trefalt G; Maroni P; Borkovec M
    J Colloid Interface Sci; 2016 Jun; 472():108-15. PubMed ID: 27016916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces.
    Jiang X; Tong M; Li H; Yang K
    J Colloid Interface Sci; 2010 Oct; 350(2):427-34. PubMed ID: 20673672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions.
    Li YV; Cathles LM
    J Colloid Interface Sci; 2014 Dec; 436():1-8. PubMed ID: 25259754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forces between solid surfaces in aqueous electrolyte solutions.
    Smith AM; Borkovec M; Trefalt G
    Adv Colloid Interface Sci; 2020 Jan; 275():102078. PubMed ID: 31837508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical double-layer effects on the deposition of zeolite A on surfaces.
    Oonkhanond B; Mullins ME
    J Colloid Interface Sci; 2005 Apr; 284(1):210-5. PubMed ID: 15752804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface force measurements between titanium dioxide surfaces prepared by atomic layer deposition in electrolyte solutions reveal non-DLVO interactions: influence of water and argon plasma cleaning.
    Walsh RB; Evans D; Craig VS
    Langmuir; 2014 Mar; 30(8):2093-100. PubMed ID: 24548170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring.
    Fatisson J; Domingos RF; Wilkinson KJ; Tufenkji N
    Langmuir; 2009 Jun; 25(11):6062-9. PubMed ID: 19466771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Interactions Driving the Template-Directed Self-Assembly of Colloidal Nanoparticles at Surfaces.
    Eklöf-Österberg J; Löfgren J; Erhart P; Moth-Poulsen K
    J Phys Chem C Nanomater Interfaces; 2020 Feb; 124(8):4660-4667. PubMed ID: 32140202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction forces, heteroaggregation, and deposition involving charged colloidal particles.
    Trefalt G; Ruiz-Cabello FJ; Borkovec M
    J Phys Chem B; 2014 Jun; 118(23):6346-55. PubMed ID: 24849534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities.
    Tufenkji N; Elimelech M
    Langmuir; 2005 Feb; 21(3):841-52. PubMed ID: 15667159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanometer-ranged attraction induced by multivalent ions between similar and dissimilar surfaces probed using an atomic force microscope (AFM).
    Moazzami-Gudarzi M; Trefalt G; Szilagyi I; Maroni P; Borkovec M
    Phys Chem Chem Phys; 2016 Mar; 18(12):8739-51. PubMed ID: 26954770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent interactions of silica nanoparticles with a flat silica surface.
    Seo J; Kim JH; Lee M; Moon J; Yi DK; Paik U
    J Colloid Interface Sci; 2016 Dec; 483():177-184. PubMed ID: 27552426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater Chemistry Has a Greater Influence on the Mobility of Nanoparticles Used for Remediation than the Chemical Heterogeneity of Aquifer Media.
    Micić V; Bossa N; Schmid D; Wiesner MR; Hofmann T
    Environ Sci Technol; 2020 Jan; 54(2):1250-1257. PubMed ID: 31860289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.