These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 28067039)

  • 1. Relighting Photosensitizers by Synergistic Integration of Albumin and Perfluorocarbon for Enhanced Photodynamic Therapy.
    Ren H; Liu J; Su F; Ge S; Yuan A; Dai W; Wu J; Hu Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3463-3473. PubMed ID: 28067039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-in-One Theranostic Nanoplatform Based on Hollow MoS
    Wang J; Liu L; You Q; Song Y; Sun Q; Wang Y; Cheng Y; Tan F; Li N
    Theranostics; 2018; 8(4):955-971. PubMed ID: 29463993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.
    Cheng Y; Cheng H; Jiang C; Qiu X; Wang K; Huan W; Yuan A; Wu J; Hu Y
    Nat Commun; 2015 Nov; 6():8785. PubMed ID: 26525216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy.
    Ren H; Liu J; Li Y; Wang H; Ge S; Yuan A; Hu Y; Wu J
    Acta Biomater; 2017 Sep; 59():269-282. PubMed ID: 28663143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(photosensitizer) Nanoparticles for Enhanced in Vivo Photodynamic Therapy by Interrupting the π-π Stacking and Extending Circulation Time.
    Zheng N; Zhang Z; Kuang J; Wang C; Zheng Y; Lu Q; Bai Y; Li Y; Wang A; Song W
    ACS Appl Mater Interfaces; 2019 May; 11(20):18224-18232. PubMed ID: 31046231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione depletion and dual-model oxygen balance disruption for photodynamic therapy enhancement.
    Li W; Yong J; Xu Y; Wang Y; Zhang Y; Ren H; Li X
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110453. PubMed ID: 31465940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-in-One Functional Silica Nanocarrier with Singlet Oxygen Generation, Storage/Release, and Self-Monitoring for Enhanced Fractional Photodynamic Therapy.
    Jiao L; Zhang X; Cui J; Peng X; Song F
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25750-25757. PubMed ID: 31245990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug Carrier for Photodynamic Cancer Therapy.
    Debele TA; Peng S; Tsai HC
    Int J Mol Sci; 2015 Sep; 16(9):22094-136. PubMed ID: 26389879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation.
    Chen D; Long Z; Zhong C; Chen L; Dang Y; Hu JJ; Lou X; Xia F
    ACS Appl Bio Mater; 2021 Jun; 4(6):5231-5239. PubMed ID: 35007005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic oxygen delivery nanoparticles for enhancing photodynamic therapy in triple-negative breast cancer.
    Fang H; Gai Y; Wang S; Liu Q; Zhang X; Ye M; Tan J; Long Y; Wang K; Zhang Y; Lan X
    J Nanobiotechnology; 2021 Mar; 19(1):81. PubMed ID: 33743740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AIE material for photodynamic therapy.
    Saini V; Venkatesh V
    Prog Mol Biol Transl Sci; 2021; 185():45-73. PubMed ID: 34782107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-Activated Water-Soluble Photosensitizers for Near-Infrared Photodynamic Cancer Therapy.
    Xiong H; Zhou K; Yan Y; Miller JB; Siegwart DJ
    ACS Appl Mater Interfaces; 2018 May; 10(19):16335-16343. PubMed ID: 29697248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-photosensitizers for enhanced photodynamic therapy.
    Lin L; Song X; Dong X; Li B
    Photodiagnosis Photodyn Ther; 2021 Dec; 36():102597. PubMed ID: 34699982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymeric Encapsulation of Novel Homoleptic Bis(dipyrrinato) Zinc(II) Complexes with Long Lifetimes for Applications as Photodynamic Therapy Photosensitisers.
    Karges J; Basu U; Blacque O; Chao H; Gasser G
    Angew Chem Int Ed Engl; 2019 Oct; 58(40):14334-14340. PubMed ID: 31386250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-Activated and Metal-Organic Framework Assisted Self-Assembly of Organic Photosensitizers.
    Wang Y; Shi L; Ma D; Xu S; Wu W; Xu L; Panahandeh-Fard M; Zhu X; Wang B; Liu B
    ACS Nano; 2020 Oct; 14(10):13056-13068. PubMed ID: 33016697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerization-Enhanced Two-Photon Photosensitization for Precise Photodynamic Therapy.
    Wang S; Wu W; Manghnani P; Xu S; Wang Y; Goh CC; Ng LG; Liu B
    ACS Nano; 2019 Mar; 13(3):3095-3105. PubMed ID: 30763072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor-pH-Responsive Dissociable Albumin-Tamoxifen Nanocomplexes Enabling Efficient Tumor Penetration and Hypoxia Relief for Enhanced Cancer Photodynamic Therapy.
    Yang Z; Chen Q; Chen J; Dong Z; Zhang R; Liu J; Liu Z
    Small; 2018 Dec; 14(49):e1803262. PubMed ID: 30307701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disassembly of Hydrophobic Photosensitizer by Biodegradable Zeolitic Imidazolate Framework-8 for Photodynamic Cancer Therapy.
    Xu D; You Y; Zeng F; Wang Y; Liang C; Feng H; Ma X
    ACS Appl Mater Interfaces; 2018 May; 10(18):15517-15523. PubMed ID: 29677444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy-Atom-Free Photosensitizers: From Molecular Design to Applications in the Photodynamic Therapy of Cancer.
    Nguyen VN; Yan Y; Zhao J; Yoon J
    Acc Chem Res; 2021 Jan; 54(1):207-220. PubMed ID: 33289536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-Accelerated Generation of Singlet Oxygen on an Au/MoS
    Younis MR; An R; Wang Y; He G; Gurram B; Wang S; Lin J; Ye D; Huang P; Xia XH
    ACS Appl Bio Mater; 2022 Feb; 5(2):747-760. PubMed ID: 35040617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.