BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28067046)

  • 1. Corrosion-Assisted Self-Growth of Au-Decorated ZnO Corn Silks and Their Photoelectrochemical Enhancement.
    Zhang Z; Choi M; Baek M; Deng Z; Yong K
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3967-3976. PubMed ID: 28067046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.
    Zhang X; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4480-9. PubMed ID: 24598779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.
    Wu M; Chen WJ; Shen YH; Huang FZ; Li CH; Li SK
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15052-60. PubMed ID: 25144940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unconventional outer-to-inner synthesis strategy for core (Au)-shell nanostructures with photo-electrochemical enhancement.
    Zhang Z; Baek M; Song H; Yong K
    Nanoscale; 2017 Apr; 9(16):5342-5351. PubMed ID: 28401236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting the Photoelectrochemical Performance of Au/ZnO Nanorods by Co-Occurring Gradient Doping and Surface Plasmon Modification.
    Güler AC; Antoš J; Masař M; Urbánek M; Machovský M; Kuřitka I
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Morphology and Plasmonic on Au/ZnO Films for Efficient Photoelectrochemical Water Splitting.
    Zayed M; Nasser N; Shaban M; Alshaikh H; Hamdy H; Ahmed AM
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZnO-Au-SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting.
    Li JM; Cheng HY; Chiu YH; Hsu YJ
    Nanoscale; 2016 Aug; 8(34):15720-9. PubMed ID: 27527337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized Energy Band Bending in ZnO Nanorods Decorated with Au Nanoparticles.
    Bruno L; Strano V; Scuderi M; Franzò G; Priolo F; Mirabella S
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of butterfly-like ZnO nanostructures and study of their self-reducing ability toward Au(3+) ions for enhanced photocatalytic efficiency.
    Song X; Liu Y; Zheng Y; Ding K; Nie S; Yang P
    Phys Chem Chem Phys; 2016 Feb; 18(6):4577-84. PubMed ID: 26795699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting.
    Liu Y; Yan X; Kang Z; Li Y; Shen Y; Sun Y; Wang L; Zhang Y
    Sci Rep; 2016 Jul; 6():29907. PubMed ID: 27443692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application.
    Abd-Ellah M; Moghimi N; Zhang L; Thomas JP; McGillivray D; Srivastava S; Leung KT
    Nanoscale; 2016 Jan; 8(3):1658-64. PubMed ID: 26690257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Visible Photoelectrochemical Activity of Ag Nanoparticle-Sandwiched CdS/Ag/ZnO Nanorods.
    Yang X; Li H; Zhang W; Sun M; Li L; Xu N; Wu J; Sun J
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):658-667. PubMed ID: 27982560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and Efficient Self-Assembly of Au@ZnO Core-Shell Nanoparticle Arrays with an Enhanced and Tunable Plasmonic Absorption for Photoelectrochemical Hydrogen Generation.
    Sun Y; Xu B; Shen Q; Hang L; Men D; Zhang T; Li H; Li C; Li Y
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31897-31906. PubMed ID: 28853855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of hierarchical core-shell Au@ZnO heteroarchitectures initiated by heteroseed assembly for photocatalytic applications.
    Qin Y; Zhou Y; Li J; Ma J; Shi D; Chen J; Yang J
    J Colloid Interface Sci; 2014 Mar; 418():171-7. PubMed ID: 24461832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process.
    Bora T; Kyaw HH; Sarkar S; Pal SK; Dutta J
    Beilstein J Nanotechnol; 2011; 2():681-90. PubMed ID: 22043457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Fabrication of Plasmonic Enhanced Noble-Metal-Decorated ZnO Nanowire Arrays for Dye-Sensitized Solar Cells.
    Tan WK; Muto H; Ito T; Kawamura G; Lockman Z; Matsuda A
    J Nanosci Nanotechnol; 2020 Jan; 20(1):359-366. PubMed ID: 31383179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic photocatalytic activity of ZnO:Au nanostructures: Tailoring the plasmon absorption and interfacial charge transfer mechanism.
    Raji R; Gopchandran KG
    J Hazard Mater; 2019 Apr; 368():345-357. PubMed ID: 30685723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting.
    Yan L; Zhao W; Liu Z
    Dalton Trans; 2016 Jul; 45(28):11346-52. PubMed ID: 27328331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity.
    Sun L; Zhao D; Song Z; Shan C; Zhang Z; Li B; Shen D
    J Colloid Interface Sci; 2011 Nov; 363(1):175-81. PubMed ID: 21816407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices.
    Do TAT; Ho TG; Bui TH; Pham QN; Giang HT; Do TT; Nguyen DV; Tran DL
    Beilstein J Nanotechnol; 2018; 9():771-779. PubMed ID: 29600138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.