These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 28067115)
1. Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering. Fan C; Wang DA Tissue Eng Part B Rev; 2017 Oct; 23(5):451-461. PubMed ID: 28067115 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Hwang CM; Sant S; Masaeli M; Kachouie NN; Zamanian B; Lee SH; Khademhosseini A Biofabrication; 2010 Sep; 2(3):035003. PubMed ID: 20823504 [TBL] [Abstract][Full Text] [Related]
3. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Lévesque SG; Lim RM; Shoichet MS Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718 [TBL] [Abstract][Full Text] [Related]
4. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting. Dubbin K; Hori Y; Lewis KK; Heilshorn SC Adv Healthc Mater; 2016 Oct; 5(19):2488-2492. PubMed ID: 27581767 [TBL] [Abstract][Full Text] [Related]
5. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation. Han LH; Lai JH; Yu S; Yang F Biomaterials; 2013 Jun; 34(17):4251-8. PubMed ID: 23489920 [TBL] [Abstract][Full Text] [Related]
6. Emulsion-Templated Gelatin/Amino Acids/Chitosan Macroporous Hydrogels with Adjustable Internal Dimensions for Three-Dimensional Stem Cell Culture. Li K; Wang H; Yan J; Shi Z; Zhu S; Cui Z ACS Biomater Sci Eng; 2024 Aug; 10(8):4878-4890. PubMed ID: 39041681 [TBL] [Abstract][Full Text] [Related]
9. Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system. Kim J; Bencherif SA; Li WA; Mooney DJ Macromol Rapid Commun; 2014 Sep; 35(18):1578-86. PubMed ID: 25113941 [TBL] [Abstract][Full Text] [Related]
10. Macroporous Hydrogel Scaffolds with Tunable Physicochemical Properties for Tissue Engineering Constructed Using Renewable Polysaccharides. Qi X; Su T; Zhang M; Tong X; Pan W; Zeng Q; Zhou Z; Shen L; He X; Shen J ACS Appl Mater Interfaces; 2020 Mar; 12(11):13256-13264. PubMed ID: 32068392 [TBL] [Abstract][Full Text] [Related]
11. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering. Henke M; Baumer J; Blunk T; Tessmar J J Tissue Eng Regen Med; 2014 Mar; 8(3):248-52. PubMed ID: 22718564 [TBL] [Abstract][Full Text] [Related]
12. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Dang HP; Shabab T; Shafiee A; Peiffer QC; Fox K; Tran N; Dargaville TR; Hutmacher DW; Tran PA Biofabrication; 2019 Apr; 11(3):035014. PubMed ID: 30933941 [TBL] [Abstract][Full Text] [Related]
13. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179 [TBL] [Abstract][Full Text] [Related]
14. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979 [TBL] [Abstract][Full Text] [Related]
15. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Shanjani Y; Pan CC; Elomaa L; Yang Y Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102 [TBL] [Abstract][Full Text] [Related]
16. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609 [TBL] [Abstract][Full Text] [Related]
17. Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells. Park SJ; Li Z; Hwang IN; Huh KM; Min KS J Endod; 2013 Aug; 39(8):1001-7. PubMed ID: 23880267 [TBL] [Abstract][Full Text] [Related]
18. Bioprinting Using Mechanically Robust Core-Shell Cell-Laden Hydrogel Strands. Mistry P; Aied A; Alexander M; Shakesheff K; Bennett A; Yang J Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28160431 [TBL] [Abstract][Full Text] [Related]
19. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture. Zhang J; Mujeeb A; Du Y; Lin J; Ge Z Biomed Mater; 2015 Jun; 10(3):035016. PubMed ID: 26107534 [TBL] [Abstract][Full Text] [Related]
20. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs. Ng WL; Goh MH; Yeong WY; Naing MW Biomater Sci; 2018 Feb; 6(3):562-574. PubMed ID: 29383354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]