These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28067210)

  • 1. Enhanced electrochemical performance of orientated VO
    Liu L; Liu Q; Zhao W; Li G; Wang L; Shi W; Chen L
    Nanotechnology; 2017 Feb; 28(6):065404. PubMed ID: 28067210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Insights into Electrochemical Lithiation/Delithiation Mechanism of α-MoO3 Nanobelt by in Situ Transmission Electron Microscopy.
    Xia W; Zhang Q; Xu F; Sun L
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9170-7. PubMed ID: 27008317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscroll buffered hybrid nanostructural VO2 (B) cathodes for high-rate and long-life lithium storage.
    Mai L; Wei Q; An Q; Tian X; Zhao Y; Xu X; Xu L; Chang L; Zhang Q
    Adv Mater; 2013 Jun; 25(21):2969-73. PubMed ID: 23519912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-free fabrication of self-supported V2O5 nanobelt arrays by a low-temperature solvothermal method with high electrochemical performance.
    Xu H; Zhang H; Liu L; Fang L; Wang Y
    Nanotechnology; 2016 Aug; 27(31):315402. PubMed ID: 27335084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreasing the Ion Diffusion Pathways for the Intercalation of Multivalent Cations into One-Dimensional TiS
    Hawkins CG; Verma A; Horbinski W; Weeks R; Mukherjee PP; Whittaker-Brooks L
    ACS Appl Mater Interfaces; 2020 May; 12(19):21788-21798. PubMed ID: 32243748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting Zn-Ion Storage Performance of Bronze-Type VO
    Cai Y; Chua R; Kou Z; Ren H; Yuan D; Huang S; Kumar S; Verma V; Amonpattaratkit P; Srinivasan M
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36110-36118. PubMed ID: 32701255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Na(1.25)V(3)O(8) nanobelts with excellent long-term stability for rechargeable lithium-ion batteries.
    Liang S; Chen T; Pan A; Liu D; Zhu Q; Cao G
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11913-7. PubMed ID: 24147642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries.
    Niu C; Meng J; Han C; Zhao K; Yan M; Mai L
    Nano Lett; 2014 May; 14(5):2873-8. PubMed ID: 24742281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-Assisted Solvothermal Synthesis of VO2 Hollow Spheres and Their Conversion into V2O5 Hollow Spheres with Improved Lithium Storage Capability.
    Pan J; Zhong L; Li M; Luo Y; Li G
    Chemistry; 2016 Jan; 22(4):1461-6. PubMed ID: 26749240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eco-friendly synthesis of VO
    Kang Q; Zhang Y; Bao S; Zhang G
    R Soc Open Sci; 2019 Feb; 6(2):181116. PubMed ID: 30891261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen vacancies enhance lithium storage performance in ultralong vanadium pentoxide nanobelt cathodes.
    Yu Y; Li J; Wang X; Chang B; Wang J; Ahmad M; Sun H
    J Colloid Interface Sci; 2019 Mar; 539():118-125. PubMed ID: 30579215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertically ordered Ni₃Si₂/Si nanorod arrays as anode materials for high-performance Li-ion batteries.
    Fan X; Zhang H; Du N; Wu P; Xu X; Li Y; Yang D
    Nanoscale; 2012 Sep; 4(17):5343-7. PubMed ID: 22814832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries.
    Xue H; Wu S; Tang J; Gong H; He P; He J; Zhou H
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8427-35. PubMed ID: 26967936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pomegranate-Structured Silica/Sulfur Composite Cathodes for High-Performance Lithium-Sulfur Batteries.
    Choi S; Su D; Shin M; Park S; Wang G
    Chem Asian J; 2018 Mar; 13(5):568-576. PubMed ID: 29333699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4.
    Wang Y; Xia H; Lu L; Lin J
    ACS Nano; 2010 Mar; 4(3):1425-32. PubMed ID: 20146455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Dimensional Peptide Nanostructure Templated Growth of Iron Phosphate Nanostructures for Lithium-Ion Battery Cathodes.
    Susapto HH; Kudu OU; Garifullin R; Yılmaz E; Guler MO
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17421-7. PubMed ID: 27315038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Performance of "Flower-like" Li4Ti5O12 Motifs as Anode Materials for High-Rate Lithium-Ion Batteries.
    Wang L; Zhang Y; Scofield ME; Yue S; McBean C; Marschilok AC; Takeuchi KJ; Takeuchi ES; Wong SS
    ChemSusChem; 2015 Oct; 8(19):3304-13. PubMed ID: 26214800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ Precursor-Template Route to Semi-Ordered NaNbO3 Nanobelt Arrays.
    Wu J; Xue D
    Nanoscale Res Lett; 2011 Dec; 6(1):14. PubMed ID: 27502638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.
    Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.