BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28067287)

  • 1. Smartphone-based low light detection for bioluminescence application.
    Kim H; Jung Y; Doh IJ; Lozano-Mahecha RA; Applegate B; Bae E
    Sci Rep; 2017 Jan; 7():40203. PubMed ID: 28067287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and application of a portable luminometer for bioluminescence detection.
    Jung Y; Coronel-Aguilera C; Doh IJ; Min HJ; Lim T; Applegate BM; Bae E
    Appl Opt; 2020 Jan; 59(3):801-810. PubMed ID: 32225212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon photomultiplier (SPM) detection of low-level bioluminescence for the development of deployable whole-cell biosensors: possibilities and limitations.
    Li H; Lopes N; Moser S; Sayler G; Ripp S
    Biosens Bioelectron; 2012 Mar; 33(1):299-303. PubMed ID: 22305444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity.
    Cevenini L; Calabretta MM; Lopreside A; Tarantino G; Tassoni A; Ferri M; Roda A; Michelini E
    Anal Bioanal Chem; 2016 Dec; 408(30):8859-8868. PubMed ID: 27853830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors.
    Paterson AS; Raja B; Mandadi V; Townsend B; Lee M; Buell A; Vu B; Brgoch J; Willson RC
    Lab Chip; 2017 Mar; 17(6):1051-1059. PubMed ID: 28154873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for Detecting Emission Spectral Change of Bioluminescent Ratiometric Indicators by a Smartphone.
    Hattori M; Matsuda T; Nagai T
    Methods Mol Biol; 2021; 2274():295-304. PubMed ID: 34050481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode.
    Daniel R; Almog R; Ron A; Belkin S; Diamand YS
    Biosens Bioelectron; 2008 Dec; 24(4):888-93. PubMed ID: 18774705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-based analytical biosensors.
    Huang X; Xu D; Chen J; Liu J; Li Y; Song J; Ma X; Guo J
    Analyst; 2018 Nov; 143(22):5339-5351. PubMed ID: 30327808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit.
    Simpson ML; Sayler GS; Patterson G; Nivens DE; Bolton EK; Rochelle JM; Arnott JC; Applegate BM; Ripp S; Guillorn MA
    Sens Actuators B Chem; 2001 Jan; 72(2):134-40. PubMed ID: 12192685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterisation of a compact device for rapid real-time-on-chip detection of thrombin activity in human serum using bioluminescence resonance energy transfer (BRET).
    Weihs F; Gel M; Wang J; Anderson A; Trowell S; Dacres H
    Biosens Bioelectron; 2020 Jun; 158():112162. PubMed ID: 32275213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Yield Determination Based on Photon Number Measurement, Protocols for Firefly Bioluminescence Reactions.
    Niwa K
    Methods Mol Biol; 2016; 1461():55-61. PubMed ID: 27424895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape Coding Microhydrogel for a Real-Time Mycotoxin Detection System Based on Smartphones.
    Ji W; Zhang Z; Tian Y; Yang Z; Cao Z; Zhang L; Qi Y; Chang J; Zhang S; Wang H
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8584-8590. PubMed ID: 30715838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit.
    Bolton EK; Sayler GS; Nivens DE; Rochelle JM; Ripp S; Simpson ML
    Sens Actuators B Chem; 2002 Jun; 85(1-2):179-85. PubMed ID: 12238524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection.
    Zangheri M; Cevenini L; Anfossi L; Baggiani C; Simoni P; Di Nardo F; Roda A
    Biosens Bioelectron; 2015 Feb; 64():63-8. PubMed ID: 25194797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence Nano Particle Detection in a Liquid Sample Using the Smartphone for Biomedical Application.
    G A; T T; Ramakrishnan S
    J Fluoresc; 2022 Jan; 32(1):135-143. PubMed ID: 34633596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of bioluminescence from individual bacterial cells: a comparison of two different low-light imaging systems.
    Sternberg C; Eberl L; Poulsen LK; Molin S
    J Biolumin Chemilumin; 1997; 12(1):7-13. PubMed ID: 9315952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical system design for biosensors based on CCD detection.
    Christensen DA; Herron JN
    Methods Mol Biol; 2009; 503():239-58. PubMed ID: 19151945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniaturized bioluminescent whole-cell sensor systems.
    Belkin S; Cheng JY
    Curr Opin Biotechnol; 2023 Aug; 82():102952. PubMed ID: 37263105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemin-Bridged MOF Interface with Double Amplification of G-Quadruplex Payload and DNAzyme Catalysis: Ultrasensitive Lasting Chemiluminescence MicroRNA Imaging.
    Mi L; Sun Y; Shi L; Li T
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7879-7887. PubMed ID: 31983198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute bioluminescence imaging at the single-cell level with a light signal at the Attowatt level.
    Enomoto T; Kubota H; Mori K; Shimogawara M; Yoshita M; Ohmiya Y; Akiyama H
    Biotechniques; 2018 Jun; 64(6):270-274. PubMed ID: 29939087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.