BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28067372)

  • 1. Selective turn-on and modulation of resonant energy transfer in single plasmonic hybrid nanostructures.
    Bujak Ł; Ishii T; Sharma DK; Hirata S; Vacha M
    Nanoscale; 2017 Jan; 9(4):1511-1519. PubMed ID: 28067372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.
    Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV
    Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO
    He J; Zheng W; Ligmajer F; Chan CF; Bao Z; Wong KL; Chen X; Hao J; Dai J; Yu SF; Lei DY
    Light Sci Appl; 2017 May; 6(5):e16217. PubMed ID: 30167245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.
    Aissaoui N; Moth-Poulsen K; Käll M; Johansson P; Wilhelmsson LM; Albinsson B
    Nanoscale; 2017 Jan; 9(2):673-683. PubMed ID: 27942672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods.
    Cao J; Zhang H; Pi X; Li D; Yang D
    Nanoscale Adv; 2021 Aug; 3(16):4810-4815. PubMed ID: 36134309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device.
    Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV
    ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling Förster Resonance Energy Transfer from Large Nanocrystals through Energy Migration.
    Deng R; Wang J; Chen R; Huang W; Liu X
    J Am Chem Soc; 2016 Dec; 138(49):15972-15979. PubMed ID: 27960320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the moderate quenching regime.
    Bohlen J; Cuartero-González Á; Pibiri E; Ruhlandt D; Fernández-Domínguez AI; Tinnefeld P; Acuna GP
    Nanoscale; 2019 Apr; 11(16):7674-7681. PubMed ID: 30946424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Nanoantennas Enable Forbidden Förster Dipole-Dipole Energy Transfer and Enhance the FRET Efficiency.
    de Torres J; Mivelle M; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Margeat E; Wenger J
    Nano Lett; 2016 Oct; 16(10):6222-6230. PubMed ID: 27623052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates.
    Ghenuche P; Mivelle M; de Torres J; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Wenger J
    Nano Lett; 2015 Sep; 15(9):6193-201. PubMed ID: 26237534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states.
    Gonzaga-Galeana JA; Zurita-Sánchez JR
    J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond.
    Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L
    Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods.
    Zhao L; Ming T; Chen H; Liang Y; Wang J
    Nanoscale; 2011 Sep; 3(9):3849-59. PubMed ID: 21826320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons.
    Kochuveedu ST; Son T; Lee Y; Lee M; Kim D; Kim DH
    Sci Rep; 2014 Apr; 4():4735. PubMed ID: 24751860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.