BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28067405)

  • 1. Lkb1 regulation of skeletal muscle development, metabolism and muscle progenitor cell homeostasis.
    Shan T; Xu Z; Liu J; Wu W; Wang Y
    J Cell Physiol; 2017 Oct; 232(10):2653-2656. PubMed ID: 28067405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis.
    Shan T; Zhang P; Liang X; Bi P; Yue F; Kuang S
    Stem Cells; 2014 Nov; 32(11):2893-907. PubMed ID: 25069613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Roles of Lkb1 in Regulating Adipose Tissue Development and Thermogenesis.
    Xu Z; Liu J; Shan T
    J Cell Physiol; 2017 Sep; 232(9):2296-2298. PubMed ID: 27731500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lkb1 deletion upregulates Pax7 expression through activating Notch signaling pathway in myoblasts.
    Shan T; Zhang P; Xiong Y; Wang Y; Kuang S
    Int J Biochem Cell Biol; 2016 Jul; 76():31-8. PubMed ID: 27131604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3.
    Koh HJ; Arnolds DE; Fujii N; Tran TT; Rogers MJ; Jessen N; Li Y; Liew CW; Ho RC; Hirshman MF; Kulkarni RN; Kahn CR; Goodyear LJ
    Mol Cell Biol; 2006 Nov; 26(22):8217-27. PubMed ID: 16966378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23) Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.
    Shimoda Y; Matsuo K; Kitamura Y; Ono K; Ueyama T; Matoba S; Yamada H; Wu T; Chen J; Emoto N; Ikeda K
    PLoS One; 2015; 10(9):e0138624. PubMed ID: 26398569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles.
    Shan T; Zhang P; Bi P; Kuang S
    J Cell Physiol; 2015 May; 230(5):1033-41. PubMed ID: 25251157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm.
    Miura S; Kai Y; Tadaishi M; Tokutake Y; Sakamoto K; Bruce CR; Febbraio MA; Kita K; Chohnan S; Ezaki O
    Am J Physiol Endocrinol Metab; 2013 Jul; 305(2):E213-29. PubMed ID: 23695215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LKB1 and AMPK: central regulators of lymphocyte metabolism and function.
    Blagih J; Krawczyk CM; Jones RG
    Immunol Rev; 2012 Sep; 249(1):59-71. PubMed ID: 22889215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of phosphatase and tensin homolog in skeletal muscle.
    Shan T; Liu J; Xu Z; Wang Y
    J Cell Physiol; 2019 Apr; 234(4):3192-3196. PubMed ID: 30471096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of feed deprivation on the AMPK signaling pathway in skeletal muscle of broiler chickens.
    Hu X; Liu L; Song Z; Sheikhahmadi A; Wang Y; Buyse J
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Jan; 191():146-54. PubMed ID: 26497445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism.
    MacIver NJ; Blagih J; Saucillo DC; Tonelli L; Griss T; Rathmell JC; Jones RG
    J Immunol; 2011 Oct; 187(8):4187-98. PubMed ID: 21930968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR.
    Sakamoto K; Göransson O; Hardie DG; Alessi DR
    Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E310-7. PubMed ID: 15068958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle.
    Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile Roles of LKB1 Kinase Signaling in Neural Development and Homeostasis.
    Kuwako KI; Okano H
    Front Mol Neurosci; 2018; 11():354. PubMed ID: 30333724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells.
    Gan B; Hu J; Jiang S; Liu Y; Sahin E; Zhuang L; Fletcher-Sananikone E; Colla S; Wang YA; Chin L; Depinho RA
    Nature; 2010 Dec; 468(7324):701-4. PubMed ID: 21124456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the AMP-activated protein kinase pathway in chickens.
    Proszkowiec-Weglarz M; Richards MP; Ramachandran R; McMurtry JP
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Jan; 143(1):92-106. PubMed ID: 16343965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMP-activated protein kinase signaling in metabolic regulation.
    Long YC; Zierath JR
    J Clin Invest; 2006 Jul; 116(7):1776-83. PubMed ID: 16823475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence against regulation of AMP-activated protein kinase and LKB1/STRAD/MO25 activity by creatine phosphate.
    Taylor EB; Ellingson WJ; Lamb JD; Chesser DG; Compton CL; Winder WW
    Am J Physiol Endocrinol Metab; 2006 Apr; 290(4):E661-9. PubMed ID: 16278246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and Regeneration.
    Thomson DM
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30314396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.