These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28067471)

  • 1. Traditional and novel tools to probe the mitochondrial metabolism in health and disease.
    Zhang Y; Avalos JL
    Wiley Interdiscip Rev Syst Biol Med; 2017 Mar; 9(2):. PubMed ID: 28067471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease.
    Huang ML; Lane DJ; Richardson DR
    Antioxid Redox Signal; 2011 Dec; 15(12):3003-19. PubMed ID: 21545274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Dysfunction in Mitochondrial Medicine: Current Limitations, Pitfalls, and Tomorrow.
    Gueguen N; Lenaers G; Reynier P; Weissig V; Edeas M
    Methods Mol Biol; 2021; 2276():1-29. PubMed ID: 34060029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial metabolic remodeling in response to genetic and environmental perturbations.
    Hollinshead KE; Tennant DA
    Wiley Interdiscip Rev Syst Biol Med; 2016 Jul; 8(4):272-85. PubMed ID: 27196610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advancements in diagnostic tools in mitochondrial energy metabolism diseases.
    Khan N
    Adv Med Sci; 2016 Sep; 61(2):244-248. PubMed ID: 26998934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complex crosstalk between mitochondria and the nucleus: What goes in between?
    Cagin U; Enriquez JA
    Int J Biochem Cell Biol; 2015 Jun; 63():10-5. PubMed ID: 25666554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases.
    Chen X; Li J; Hou J; Xie Z; Yang F
    Expert Rev Proteomics; 2010 Jun; 7(3):333-45. PubMed ID: 20536306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial response to controlled nutrition in health and disease.
    Schiff M; Bénit P; Coulibaly A; Loublier S; El-Khoury R; Rustin P
    Nutr Rev; 2011 Feb; 69(2):65-75. PubMed ID: 21294740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial iron-sulfur protein biogenesis and human disease.
    Stehling O; Wilbrecht C; Lill R
    Biochimie; 2014 May; 100():61-77. PubMed ID: 24462711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial pathology: stress signals from the energy factory.
    Raimundo N
    Trends Mol Med; 2014 May; 20(5):282-92. PubMed ID: 24508276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Calcium Handling in Physiology and Disease.
    Granatiero V; De Stefani D; Rizzuto R
    Adv Exp Med Biol; 2017; 982():25-47. PubMed ID: 28551780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial medicine in the omics era.
    Rahman J; Rahman S
    Lancet; 2018 Jun; 391(10139):2560-2574. PubMed ID: 29903433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of neuronal bioenergetics by neurosteroids: implications for age-related neurodegenerative disorders.
    Grimm A; Schmitt K; Lang UE; Mensah-Nyagan AG; Eckert A
    Biochim Biophys Acta; 2014 Dec; 1842(12 Pt A):2427-38. PubMed ID: 25281013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Emerging Role of MitomiRs in the Pathophysiology of Human Disease.
    Duarte FV; Palmeira CM; Rolo AP
    Adv Exp Med Biol; 2015; 888():123-54. PubMed ID: 26663182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human mitochondrial nucleases.
    Bruni F; Lightowlers RN; Chrzanowska-Lightowlers ZM
    FEBS J; 2017 Jun; 284(12):1767-1777. PubMed ID: 27926991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic-receptor-independent dysfunction of mitochondrial respiratory chain enzymes, reduced mitochondrial transmembrane potential and ATP depletion underlie necrotic cell death induced by the organophosphate poison mevinphos.
    Chan JY; Chan SH; Dai KY; Cheng HL; Chou JL; Chang AY
    Neuropharmacology; 2006 Dec; 51(7-8):1109-19. PubMed ID: 16984802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.
    Amaral AU; Cecatto C; Castilho RF; Wajner M
    J Neurochem; 2016 Apr; 137(1):62-75. PubMed ID: 26800654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD
    Zhao Y; Yang Y
    Free Radic Biol Med; 2016 Nov; 100():43-52. PubMed ID: 27261194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical implications of mitochondrial dysfunction.
    Muravchick S; Levy RJ
    Anesthesiology; 2006 Oct; 105(4):819-37. PubMed ID: 17006082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.