BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 28067500)

  • 21. Codon usage and modular interactions between messenger RNA coding regions and small RNAs in Escherichia coli.
    Tello M; Avalos F; Orellana O
    BMC Genomics; 2018 Sep; 19(1):657. PubMed ID: 30189833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.
    Panja S; Santiago-Frangos A; Schu DJ; Gottesman S; Woodson SA
    J Mol Biol; 2015 Nov; 427(22):3491-3500. PubMed ID: 26196441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA.
    Santiago-Frangos A; Kavita K; Schu DJ; Gottesman S; Woodson SA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6089-E6096. PubMed ID: 27681631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA.
    Corcoran CP; Podkaminski D; Papenfort K; Urban JH; Hinton JC; Vogel J
    Mol Microbiol; 2012 May; 84(3):428-45. PubMed ID: 22458297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stem-Loop Structures within mRNA Coding Sequences Activate Translation Initiation and Mediate Control by Small Regulatory RNAs.
    Jagodnik J; Chiaruttini C; Guillier M
    Mol Cell; 2017 Oct; 68(1):158-170.e3. PubMed ID: 28918899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural model of an mRNA in complex with the bacterial chaperone Hfq.
    Peng Y; Curtis JE; Fang X; Woodson SA
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17134-9. PubMed ID: 25404287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. sRNA-Mediated Control of Transcription Termination in E. coli.
    Sedlyarova N; Shamovsky I; Bharati BK; Epshtein V; Chen J; Gottesman S; Schroeder R; Nudler E
    Cell; 2016 Sep; 167(1):111-121.e13. PubMed ID: 27662085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Easy-to-Use Plasmid Toolset for Efficient Generation and Benchmarking of Synthetic Small RNAs in Bacteria.
    Köbel TS; Melo Palhares R; Fromm C; Szymanski W; Angelidou G; Glatter T; Georg J; Berghoff BA; Schindler D
    ACS Synth Biol; 2022 Sep; 11(9):2989-3003. PubMed ID: 36044590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum.
    Venkataramanan KP; Jones SW; McCormick KP; Kunjeti SG; Ralston MT; Meyers BC; Papoutsakis ET
    BMC Genomics; 2013 Dec; 14():849. PubMed ID: 24299206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition.
    Schu DJ; Zhang A; Gottesman S; Storz G
    EMBO J; 2015 Oct; 34(20):2557-73. PubMed ID: 26373314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of sRNA-mRNA interactions by electrophoretic mobility shift assay.
    Morita T; Maki K; Aiba H
    Methods Mol Biol; 2012; 905():235-44. PubMed ID: 22736008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthetic small regulatory RNAs in microbial metabolic engineering.
    Xie WH; Deng HK; Hou J; Wang LJ
    Appl Microbiol Biotechnol; 2021 Jan; 105(1):1-12. PubMed ID: 33201273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria.
    Bossi L; Figueroa-Bossi N
    Nat Rev Microbiol; 2016 Dec; 14(12):775-784. PubMed ID: 27640758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable and enhanced gene expression in Clostridium acetobutylicum using synthetic untranslated regions with a stem-loop.
    Lee J; Jang YS; Papoutsakis ET; Lee SY
    J Biotechnol; 2016 Jul; 230():40-3. PubMed ID: 27188957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains.
    Jäger D; Pernitzsch SR; Richter AS; Backofen R; Sharma CM; Schmitz RA
    Nucleic Acids Res; 2012 Nov; 40(21):10964-79. PubMed ID: 22965121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo screening of artificial small RNAs for silencing endogenous genes in Escherichia coli.
    Sharma V; Yokobayashi Y
    Methods Mol Biol; 2013; 1073():75-84. PubMed ID: 23996441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The sibling sRNAs NgncR_162 and NgncR_163 of Neisseria gonorrhoeae participate in the expression control of metabolic, transport and regulatory proteins.
    Bauer S; Helmreich J; Zachary M; Kaethner M; Heinrichs E; Rudel T; Beier D
    Microbiology (Reading); 2017 Nov; 163(11):1720-1734. PubMed ID: 29058643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modification of the RpoS network with a synthetic small RNA.
    Jin Y; Wu J; Li Y; Cai Z; Huang JD
    Nucleic Acids Res; 2013 Sep; 41(17):8332-40. PubMed ID: 23842672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modularity of Escherichia coli sRNA regulation revealed by sRNA-target and protein network analysis.
    Wu TH; Chang IY; Chu LC; Huang HC; Ng WV
    BMC Bioinformatics; 2010 Oct; 11 Suppl 7(Suppl 7):S11. PubMed ID: 21106118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. sRNATarBase 3.0: an updated database for sRNA-target interactions in bacteria.
    Wang J; Liu T; Zhao B; Lu Q; Wang Z; Cao Y; Li W
    Nucleic Acids Res; 2016 Jan; 44(D1):D248-53. PubMed ID: 26503244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.