These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28067524)

  • 21. The mitochondrial lysine acetylome of Arabidopsis.
    König AC; Hartl M; Boersema PJ; Mann M; Finkemeier I
    Mitochondrion; 2014 Nov; 19 Pt B():252-60. PubMed ID: 24727099
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo carbamylation and acetylation of water-soluble human lens alphaB-crystallin lysine 92.
    Lapko VN; Smith DL; Smith JB
    Protein Sci; 2001 Jun; 10(6):1130-6. PubMed ID: 11369851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The acetylproteome of Gram-positive model bacterium Bacillus subtilis.
    Kim D; Yu BJ; Kim JA; Lee YJ; Choi SG; Kang S; Pan JG
    Proteomics; 2013 May; 13(10-11):1726-36. PubMed ID: 23468065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histone H4 N-terminal acetylation in Kasumi-1 cells treated with depsipeptide determined by acetic acid-urea polyacrylamide gel electrophoresis, amino acid coded mass tagging, and mass spectrometry.
    Zhang L; Su X; Liu S; Knapp AR; Parthun MR; Marcucci G; Freitas MA
    J Proteome Res; 2007 Jan; 6(1):81-8. PubMed ID: 17203951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Resolution Mass Spectrometry to Identify and Quantify Acetylation Protein Targets.
    Schilling B; Meyer JG; Wei L; Ott M; Verdin E
    Methods Mol Biol; 2019; 1983():3-16. PubMed ID: 31087289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells.
    Glatter T; Ahrné E; Schmidt A
    J Proteome Res; 2015 Nov; 14(11):4472-85. PubMed ID: 26412744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification and Identification of Post-Translational Modifications Using Modern Proteomics Approaches.
    Holtz A; Basisty N; Schilling B
    Methods Mol Biol; 2021; 2228():225-235. PubMed ID: 33950494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cardiac acetyl-lysine proteome.
    Foster DB; Liu T; Rucker J; O'Meally RN; Devine LR; Cole RN; O'Rourke B
    PLoS One; 2013; 8(7):e67513. PubMed ID: 23844019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-Specific Lysine Acetylation Stoichiometry Across Subcellular Compartments.
    Lindahl AJ; Lawton AJ; Baeza J; Dowell JA; Denu JM
    Methods Mol Biol; 2019; 1983():79-106. PubMed ID: 31087294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.
    Nie Z; Zhu H; Zhou Y; Wu C; Liu Y; Sheng Q; Lv Z; Zhang W; Yu W; Jiang C; Xie L; Zhang Y; Yao J
    Proteomics; 2015 Sep; 15(18):3253-66. PubMed ID: 26046922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive profiling of protein lysine acetylation in Escherichia coli.
    Zhang K; Zheng S; Yang JS; Chen Y; Cheng Z
    J Proteome Res; 2013 Feb; 12(2):844-51. PubMed ID: 23294111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acetylome analysis of lysine acetylation in the plant pathogenic bacterium Brenneria nigrifluens.
    Li Y; Xue H; Bian DR; Xu G; Piao C
    Microbiologyopen; 2020 Jan; 9(1):e00952. PubMed ID: 31677250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of the MIDAS approach for analysis of lysine acetylation sites.
    Evans CA; Griffiths JR; Unwin RD; Whetton AD; Corfe BM
    Methods Mol Biol; 2013; 981():25-36. PubMed ID: 23381851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lysine acetylation regulates the activity of Escherichia coli pyridoxine 5'-phosphate oxidase.
    Gu J; Chen Y; Guo H; Sun M; Yang M; Wang X; Zhang X; Deng J
    Acta Biochim Biophys Sin (Shanghai); 2017 Feb; 49(2):186-192. PubMed ID: 28039149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic analysis of the lysine acetylome in Vibrio parahemolyticus.
    Pan J; Ye Z; Cheng Z; Peng X; Wen L; Zhao F
    J Proteome Res; 2014 Jul; 13(7):3294-302. PubMed ID: 24874924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein carbamylation: in vivo modification or in vitro artefact?
    Kollipara L; Zahedi RP
    Proteomics; 2013 Mar; 13(6):941-4. PubMed ID: 23335428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted quantitation of acetylated lysine peptides by selected reaction monitoring mass spectrometry.
    Rardin MJ; Held JM; Gibson BW
    Methods Mol Biol; 2013; 1077():121-31. PubMed ID: 24014403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple strategies to enhance discovery of acetylation post-translational modifications by quadrupole-orbitrap LC-MS/MS.
    Manning AJ; Lee J; Wolfgeher DJ; Kron SJ; Greenberg JT
    Biochim Biophys Acta Proteins Proteom; 2018 Feb; 1866(2):224-229. PubMed ID: 29050961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying acetylated proteins in mitosis.
    Chuang C; Yu-Lee LY
    Methods Mol Biol; 2012; 909():181-204. PubMed ID: 22903717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.