These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28067643)

  • 81. Effects of pH and substrate on the competition between glycogen and phosphorus accumulating organisms.
    Cokgor EU; Yagci NO; Randall CW; Artan N; Orhon D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(7):1695-704. PubMed ID: 15242119
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation.
    Tong J; Chen Y
    Environ Sci Technol; 2007 Oct; 41(20):7126-30. PubMed ID: 17993158
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Dynamics of intracellular polymers in enhanced biological phosphorus removal processes under different organic carbon concentrations.
    Xing L; Ren L; Tang B; Wu G; Guan Y
    Biomed Res Int; 2013; 2013():761082. PubMed ID: 24381942
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon (P/C) ratios.
    Kong YH; Beer M; Rees GN; Seviour RJ
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2299-2307. PubMed ID: 12177324
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Acetate favors more phosphorus accumulation into aerobic granular sludge than propionate during the treatment of synthetic fermentation liquor.
    Cai W; Huang W; Li H; Sun B; Xiao H; Zhang Z; Lei Z
    Bioresour Technol; 2016 Aug; 214():596-603. PubMed ID: 27183235
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The impact of temperature on the metabolism of volatile fatty acids by polyphosphate accumulating organisms (PAOs).
    Wang L; Shen N; Oehmen A; Zhou Y
    Environ Res; 2020 Sep; 188():109729. PubMed ID: 32521304
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comparison of fatty acid composition and kinetics of phosphorus-accumulating organisms and glycogen-accumulating organisms.
    Wang JC; Park JK; Whang LM
    Water Environ Res; 2001; 73(6):704-10. PubMed ID: 11833764
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The role of poly-hydroxy-alkanoate form in determining the response of enhanced biological phosphorus removal biomass to volatile fatty acids.
    Liu YH; Geiger C; Randall AA
    Water Environ Res; 2002; 74(1):57-67. PubMed ID: 11995868
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Effect of fluoxetine on enhanced biological phosphorus removal using a sequencing batch reactor.
    Zhao J; Yuan Q; Sun Y; Zhang J; Zhang D; Bian R
    Bioresour Technol; 2021 Jan; 320(Pt B):124396. PubMed ID: 33212384
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effect of dissolved oxygen on biological nutrient removal by denitrifying phosphorus-accumulating organisms in a continuous-flow system.
    Yuan Q; Oleszkiewicz JA
    Water Environ Res; 2011 Nov; 83(11):2107-14. PubMed ID: 22195433
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Anaerobic uptake of phosphate in an anaerobic-aerobic granular sludge sequencing batch reactor.
    Wang X; Ji M; Wang JF; Liu Z; Yang ZY
    Water Sci Technol; 2006; 53(9):63-70. PubMed ID: 16841728
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A biochemical hypothesis explaining the response of enhanced biological phosphorus removal biomass to organic substrates.
    Hood CR; Randall AA
    Water Res; 2001 Aug; 35(11):2758-66. PubMed ID: 11456176
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter.
    Tian Q; Ong SK; Xie X; Li F; Zhu Y; Wang FR; Yang B
    Chemosphere; 2016 Feb; 144():1797-806. PubMed ID: 26524149
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus.
    Santos MM; Lemos PC; Reis MA; Santos H
    Appl Environ Microbiol; 1999 Sep; 65(9):3920-8. PubMed ID: 10473396
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [Aerobic Granular Sludge System with Multiple Influent-Aeration Operation Strategy].
    Zhang J; Wang YY; Li D; Liu ZC; Cao SY
    Huan Jing Ke Xue; 2020 Mar; 41(3):1409-1417. PubMed ID: 32608643
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Assessing the effects of solids residence time and volatile fatty acid augmentation on biological phosphorus removal using real wastewater.
    Horgan CJ; Coats ER; Loge FJ
    Water Environ Res; 2010 Mar; 82(3):216-26. PubMed ID: 20369565
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Evaluation of the potential effects of equalization on the performance of biological phosphorus removal systems.
    Filipe CD; Meinhold J; Jørgensen SB; Daigger GT; Grady CP
    Water Environ Res; 2001; 73(3):276-85. PubMed ID: 11561586
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Contrast of volatile fatty acid driven and inorganic acid or base driven phosphorus release and uptake in enhanced biological phosphorus removal.
    Randall AA
    Water Environ Res; 2012 Apr; 84(4):305-12. PubMed ID: 22834218
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Metabolic pathway for propionate utilization by phosphorus-accumulating organisms in activated sludge: 13C labeling and in vivo nuclear magnetic resonance.
    Lemos PC; Serafim LS; Santos MM; Reis MA; Santos H
    Appl Environ Microbiol; 2003 Jan; 69(1):241-51. PubMed ID: 12514001
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Micro-oxygen Process Improved Synthesis of PHAs with Undomesticated Excess Sludge.
    Fang Q; Huang Z; Liu Y; Ji S; Xie Y; Huang Z; Huang D; Zeng Y
    Appl Biochem Biotechnol; 2020 Oct; 192(2):367-380. PubMed ID: 32382942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.