These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28067644)

  • 1. Eco-friendly process combining physical-chemical and biological technics for the fermented dairy products waste pretreatment and reuse.
    Kasmi M; Hamdi M; Trabelsi I
    Water Sci Technol; 2017 Jan; 75(1-2):39-47. PubMed ID: 28067644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Denitrification potential of industrial wastewaters.
    De Lucas A; Rodríguez L; Villaseñor J; Fernández FJ
    Water Res; 2005 Sep; 39(15):3715-26. PubMed ID: 16140356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation.
    Kasmi M; Hamdi M; Trabelsi I
    Environ Sci Pollut Res Int; 2017 May; 24(15):13604-13613. PubMed ID: 28391464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic treatment of sulfate-containing municipal wastewater with a fluidized bed reactor at 20 °C.
    Düppenbecker B; Cornel P
    Water Sci Technol; 2016; 73(10):2446-52. PubMed ID: 27191566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valorization of residual soft drinks by baker's yeast production and insight for dairy wastewater whey incorporation.
    Kasmi M; Kallel A; Elleuch L; Hamdi M; Trabelsi I
    Water Sci Technol; 2019 Feb; 79(4):635-644. PubMed ID: 30975930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of fermented superphosphate pretreatment and step-feed mode on biological denitrification of piggery wastewater.
    Luo Z; Wang D; Yang J; Huang H; Su G
    Sci Total Environ; 2019 May; 665():724-730. PubMed ID: 30786261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dairy wastewater on changes in COD fractions in technical-scale SBR type reactors.
    Struk-Sokołowska J; Rodziewicz J; Mielcarek A
    Water Sci Technol; 2017 Apr; 2017(1):156-169. PubMed ID: 29698231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of fermented wastewaters from butter production on phosphates removal in a sequencing batch reactor.
    Janczukowicz W; Rodziewicz J; Thornton A; Czaplicka K
    Bioresour Technol; 2012 Sep; 120():34-9. PubMed ID: 22776262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry.
    Debowski M; Krzemieniewski M; Zieliński M; Dudek M; Grala A
    Environ Technol; 2013; 34(9-12):1439-46. PubMed ID: 24191477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations.
    Collivignarelli MC; Bertanza G; Sordi M; Pedrazzani R
    Water Sci Technol; 2015; 71(4):588-96. PubMed ID: 25746652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic granulation utilizing fermented municipal wastewater under low pH and alkalinity conditions in a sequencing batch reactor.
    Leong J; Rezania B; Mavinic DS
    Environ Technol; 2016; 37(1):55-63. PubMed ID: 26086940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological phosphorus removal from a phosphorus-rich dairy processing wastewater.
    Bickers PO; Bhamidimarri R; Shepherd J; Russell J
    Water Sci Technol; 2003; 48(8):43-51. PubMed ID: 14682569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of A-stage process treating combined municipal-industrial wastewater.
    Trzcinski AP; Wang C; Zhang D; Ang WS; Lin LL; Niwa T; Fukuzaki Y; Ng WJ
    Water Sci Technol; 2017 Jan; 75(1-2):228-238. PubMed ID: 28067663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pollution control in pulp and paper industrial effluents using integrated chemical-biological treatment sequences.
    El-Bestawy E; El-Sokkary I; Hussein H; Keela AF
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1517-29. PubMed ID: 18716811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation of agro-food wastewaters by activated sludge.
    de Lucas A; Rodríguez L; Villaseñor J; Fernández FJ
    Water Res; 2007 Apr; 41(8):1635-44. PubMed ID: 17350075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.
    Zhang Z
    Water Sci Technol; 2017 Dec; 76(11-12):3278-3288. PubMed ID: 29236007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confectionery industry: a case study on treatability-based effluent characterization and treatment system performance.
    Ozgun H; Karagul N; Dereli RK; Ersahin ME; Coskuner T; Ciftci DI; Ozturk I; Altinbas M
    Water Sci Technol; 2012; 66(1):15-20. PubMed ID: 22678195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pretreatment of Wastewater from Licorice Processing-A Preliminary Evaluation.
    Ramaswami S; Behrendt J; Gulyas H; Otterpohl R
    Water Environ Res; 2016 Nov; 88(11):2032-2039. PubMed ID: 28661322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic wet oxidation of high concentration pharmaceutical wastewater with Fe
    Zeng X; Liu J; Zhao J
    Water Sci Technol; 2018 Jul; 2017(3):661-666. PubMed ID: 30016283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.