These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28067834)

  • 1. Iodine Absorption Cells Purity Testing.
    Hrabina J; Zucco M; Philippe C; Pham TM; Holá M; Acef O; Lazar J; Číp O
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure.
    Hrabina J; Šarbort M; Acef O; Burck FD; Chiodo N; Holá M; Číp O; Lazar J
    Appl Opt; 2014 Nov; 53(31):7435-41. PubMed ID: 25402909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency references based on molecular iodine for the study of Yb atoms using the
    Tanabe Y; Sakamoto Y; Kohno T; Akamatsu D; Hong FL
    Opt Express; 2022 Dec; 30(26):46487-46500. PubMed ID: 36558601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.
    Inaba H; Hosaka K; Yasuda M; Nakajima Y; Iwakuni K; Akamatsu D; Okubo S; Kohno T; Onae A; Hong FL
    Opt Express; 2013 Apr; 21(7):7891-6. PubMed ID: 23571880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact iodine-stabilized laser operating at 531 nm with stability at the 10(-12) level and using a coin-sized laser module.
    Kobayashi T; Akamatsu D; Hosaka K; Inaba H; Okubo S; Tanabe T; Yasuda M; Onae A; Hong FL
    Opt Express; 2015 Aug; 23(16):20749-59. PubMed ID: 26367927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injection locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in 43Ca+.
    Linke NM; Ballance CJ; Lucas DM
    Opt Lett; 2013 Dec; 38(23):5087-9. PubMed ID: 24281516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise frequency measurements of iodine hyperfine transitions at 671 nm.
    Huang YC; Chen HC; Chen SE; Shy JT; Wang LB
    Appl Opt; 2013 Mar; 52(7):1448-52. PubMed ID: 23458797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase noise analysis of a 10 Watt Yb-doped fibre amplifier seeded by a 1-Hz-linewidth laser.
    Ricciardi I; Mosca S; Maddaloni P; Santamaria L; De Rosa M; De Natale P
    Opt Express; 2013 Jun; 21(12):14618-26. PubMed ID: 23787649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-Doppler molecular-iodine transitions near the dissociation limit (523-498 nm).
    Cheng WY; Chen L; Yoon TH; Hall JL; Ye J
    Opt Lett; 2002 Apr; 27(8):571-3. PubMed ID: 18007865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of coating technology and thermal annealing on the optical performance of AR coatings in iodine-filled absorption cells.
    Oulehla J; Pokorný P; Hrabina J; Holá M; Číp O; Lazar J
    Opt Express; 2019 Apr; 27(7):9361-9371. PubMed ID: 31045088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system.
    Ponsardin P; Higdon NS; Grossmann BE; Browell EV
    Appl Opt; 1994 Sep; 33(27):6439-50. PubMed ID: 20941182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-precision, accurate optical frequency reference using a Fabry-Perót diode laser.
    Chang H; Myneni K; Smith DD; Liaghati-Mobarhan HR
    Rev Sci Instrum; 2017 Jun; 88(6):063101. PubMed ID: 28667977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy.
    Douglass KO; Olson DA
    Metrologia; 2016 Jun; 53(3):S96-S106. PubMed ID: 27881884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-kilohertz laser linewidth narrowing using polarization spectroscopy.
    Torrance JS; Sparkes BM; Turner LD; Scholten RE
    Opt Express; 2016 May; 24(11):11396-406. PubMed ID: 27410068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser.
    Wang C; Lv S; Liu F; Bi J; Li L; Chen L
    Rev Sci Instrum; 2014 Aug; 85(8):083113. PubMed ID: 25173252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperfine structure measurement of rubidium atom and tunable diode laser stabilization by using Sagnac interferometer.
    Kim JT; Zhen L; Kapitanov V; Kim HS; Park JR; Park SH
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3559-61. PubMed ID: 17252811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iodine-stabilized single-frequency green InGaN diode laser.
    Chen YH; Lin WC; Shy JT; Chui HC
    Opt Lett; 2018 Jan; 43(1):126-129. PubMed ID: 29328213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance iodine fiber frequency standard.
    Lurie A; Baynes FN; Anstie JD; Light PS; Benabid F; Stace TM; Luiten AN
    Opt Lett; 2011 Dec; 36(24):4776-8. PubMed ID: 22179880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Measurement of the Rb[5P3/2(F'=4)] hyperfine level nonradiative decay rate near a metallic film with laser retrofluoresence spectroscopy].
    Liu J; Xin JT; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):6-9. PubMed ID: 19385194
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.