BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28067852)

  • 1. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW).
    Sriphutkiat Y; Zhou Y
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Yazdi S; Lin SC; Ding X; Chiang IK; Sharp K; Huang TJ
    Lab Chip; 2011 Jul; 11(14):2319-24. PubMed ID: 21709881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
    Dong J; Liang D; Yang X; Sun C
    Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves.
    Ai Y; Sanders CK; Marrone BL
    Anal Chem; 2013 Oct; 85(19):9126-34. PubMed ID: 23968497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Modeling Using Immersed Boundary-Lattice Boltzmann Method and Experiments for Particle Manipulation under Standing Surface Acoustic Waves.
    Alshehhi F; Waheed W; Al-Ali A; Abu-Nada E; Alazzam A
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems.
    Devendran C; Albrecht T; Brenker J; Alan T; Neild A
    Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation.
    Soliman AM; Eldosoky MA; Taha TE
    Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and numerical studies on standing surface acoustic wave microfluidics.
    Mao Z; Xie Y; Guo F; Ren L; Huang PH; Chen Y; Rufo J; Costanzo F; Huang TJ
    Lab Chip; 2016 Feb; 16(3):515-24. PubMed ID: 26698361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microparticle Manipulation by Standing Surface Acoustic Waves with Dual-frequency Excitations.
    Zhou Y; Sriphutkiat Y
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of microchannel height on the acoustophoretic motion of sub-micron particles.
    Lai TW; Tennakoon T; Chan KC; Liu CH; Chao CYH; Fu SC
    Ultrasonics; 2024 Jan; 136():107126. PubMed ID: 37553269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices.
    Hsu JC; Hsu CH; Huang YW
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Study of Particle Separation through Integrated Multi-Stage Surface Acoustic Waves and Modulated Driving Signals.
    Jiang Y; Chen J; Xuan W; Liang Y; Huang X; Cao Z; Sun L; Dong S; Luo J
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves.
    Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ
    Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder.
    Liang S; Chaohui W
    Phys Rev E; 2018 Mar; 97(3-1):033103. PubMed ID: 29776072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standing surface acoustic wave (SSAW)-based microfluidic cytometer.
    Chen Y; Nawaz AA; Zhao Y; Huang PH; McCoy JP; Levine SJ; Wang L; Huang TJ
    Lab Chip; 2014 Mar; 14(5):916-23. PubMed ID: 24406848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of cell spheroids using Standing Surface Acoustic Wave (SSAW).
    Sriphutkiat Y; Kasetsirikul S; Zhou Y
    Int J Bioprint; 2018; 4(1):130. PubMed ID: 33102912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II.
    Sachs S; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.