BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28067852)

  • 21. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics.
    Peng T; Lin X; Li L; Huang L; Jiang B; Jia Y
    Heliyon; 2024 Feb; 10(3):e25042. PubMed ID: 38322952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect.
    Ma Z; Guo J; Liu YJ; Ai Y
    Nanoscale; 2015 Sep; 7(33):14047-54. PubMed ID: 26239679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter.
    Ren L; Yang S; Zhang P; Qu Z; Mao Z; Huang PH; Chen Y; Wu M; Wang L; Li P; Huang TJ
    Small; 2018 Oct; 14(40):e1801996. PubMed ID: 30168662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW).
    Chen Y; Li S; Gu Y; Li P; Ding X; Wang L; McCoy JP; Levine SJ; Huang TJ
    Lab Chip; 2014 Mar; 14(5):924-30. PubMed ID: 24413889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces.
    Bao F; Hao H; Yin Z; Tu C
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface Acoustic Wave-Based Microfluidic Device for Microparticles Manipulation: Effects of Microchannel Elasticity on the Device Performance.
    Mezzanzanica G; Français O; Mariani S
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave.
    Nam J; Lim H; Kim C; Yoon Kang J; Shin S
    Biomicrofluidics; 2012 Jun; 6(2):24120-2412010. PubMed ID: 22670167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virtual membrane for filtration of particles using surface acoustic waves (SAW).
    Fakhfouri A; Devendran C; Collins DJ; Ai Y; Neild A
    Lab Chip; 2016 Sep; 16(18):3515-23. PubMed ID: 27458086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics.
    Namnabat MS; Moghimi Zand M; Houshfar E
    Sci Rep; 2021 Jun; 11(1):13326. PubMed ID: 34172758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Standing surface acoustic wave (SSAW)-based cell washing.
    Li S; Ding X; Mao Z; Chen Y; Nama N; Guo F; Li P; Wang L; Cameron CE; Huang TJ
    Lab Chip; 2015 Jan; 15(1):331-8. PubMed ID: 25372273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves.
    Meng L; Cai F; Zhang Z; Niu L; Jin Q; Yan F; Wu J; Wang Z; Zheng H
    Biomicrofluidics; 2011 Dec; 5(4):44104-4410410. PubMed ID: 22662056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet.
    Rogers PR; Friend JR; Yeo LY
    Lab Chip; 2010 Nov; 10(21):2979-85. PubMed ID: 20737070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Focusing of Aerosol Particles in the Microchannel under Reverse External Force: A Numerical Simulation Study.
    Qin Y; Fan LL; Zhao L
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.