BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28067855)

  • 41. Investigations on the interaction of the phototoxic alkaloid coralyne with serum albumins.
    Khan AY; Hossain M; Suresh Kumar G
    Chemosphere; 2012 May; 87(7):775-81. PubMed ID: 22305193
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The mechanism of cytotoxicity by Naja naja atra cardiotoxin 3 is physically distant from its membrane-damaging effect.
    Chen KC; Kao PH; Lin SR; Chang LS
    Toxicon; 2007 Nov; 50(6):816-24. PubMed ID: 17714752
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membrane-binding motif identified in the three-finger loops of P-type cardiotoxin.
    Sun YJ; Wu WG; Chiang CM; Hsin AY; Hsiao CD
    Biochemistry; 1997 Mar; 36(9):2403-13. PubMed ID: 9054545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structurally homologous toxins isolated from the Taiwan cobra (Naja naja atra) differ significantly in their structural stability.
    Sivaraman T; Kumar TK; Tu YT; Peng HJ; Yu C
    Arch Biochem Biophys; 1999 Mar; 363(1):107-15. PubMed ID: 10049504
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural basis of citrate-dependent and heparan sulfate-mediated cell surface retention of cobra cardiotoxin A3.
    Lee SC; Guan HH; Wang CH; Huang WN; Tjong SC; Chen CJ; Wu WG
    J Biol Chem; 2005 Mar; 280(10):9567-77. PubMed ID: 15590643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly selective and sensitive detection of coralyne based on the binding chemistry of aptamer and graphene oxide.
    Zhang P; Wang Y; Leng F; Xiong ZH; Huang CZ
    Talanta; 2013 Aug; 112():117-22. PubMed ID: 23708546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Roles of lysine residues and N-terminal alpha-amino group in membrane-damaging activity of Taiwan cobra cardiotoxin 3 toward anionic and zwitterionic phospholipid vesicles.
    Chiou YL; Kao PH; Liu WH; Lin SR; Chang LS
    Toxicon; 2010; 55(2-3):256-64. PubMed ID: 19647762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solution structure of cardiotoxin V from Naja naja atra.
    Singhal AK; Chien KY; Wu WG; Rule GS
    Biochemistry; 1993 Aug; 32(31):8036-44. PubMed ID: 8347605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coralyne binds tightly to both T.A.T- and C.G.C(+)-containing DNA triplexes.
    Lee JS; Latimer LJ; Hampel KJ
    Biochemistry; 1993 Jun; 32(21):5591-7. PubMed ID: 8504079
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif.
    Vyas AA; Pan JJ; Patel HV; Vyas KA; Chiang CM; Sheu YC; Hwang JK; Wu Wg
    J Biol Chem; 1997 Apr; 272(15):9661-70. PubMed ID: 9092495
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of cationic residues in cytolytic activity: modification of lysine residues in the cardiotoxin from Naja nigricollis venom and correlation between cytolytic and antiplatelet activity.
    Kini RM; Evans HJ
    Biochemistry; 1989 Nov; 28(23):9209-15. PubMed ID: 2513886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ label-free and sensitive detection assay for cell apoptosis via polyadenosine-coralyne fluorescence enhancement strategy.
    Wu C; Wang J; Chen Y; Xing X
    Anal Biochem; 2021 Nov; 632():114329. PubMed ID: 34525387
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Membrane binding motif of the P-type cardiotoxin.
    Dubovskii PV; Dementieva DV; Bocharov EV; Utkin YN; Arseniev AS
    J Mol Biol; 2001 Jan; 305(1):137-49. PubMed ID: 11114253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unfolding and refolding of cardiotoxin III elucidated by reversible conversion of the native and scrambled species.
    Chang JY; Kumar TK; Yu C
    Biochemistry; 1998 May; 37(19):6745-51. PubMed ID: 9578558
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In situ hybridization and immunohistochemical analysis of the expression of cardiotoxin and neurotoxin genes in Naja naja sputatrix.
    Lachumanan R; Armugam A; Durairaj P; Gopalakrishnakone P; Tan CH; Jeyaseelan K
    J Histochem Cytochem; 1999 Apr; 47(4):551-60. PubMed ID: 10082757
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of isoquinoline alkaloids with an RNA triplex: structural and thermodynamic studies of berberine, palmatine, and coralyne binding to poly(U).poly(A)(*)poly(U).
    Sinha R; Kumar GS
    J Phys Chem B; 2009 Oct; 113(40):13410-20. PubMed ID: 19754095
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Purification, partial characterization, crystallization and preliminary X-ray diffraction of a novel cardiotoxin-like basic protein from Naja naja atra (South Anhui) venom.
    Rong H; Li Y; Lou XH; Zhang X; Gao YX; Teng MK; Niu LW
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Feb; 63(Pt 2):130-4. PubMed ID: 17277458
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of acidic amino acid residues in the structural stability of snake cardiotoxins.
    Chiang CM; Chang SL; Lin HJ; Wu WG
    Biochemistry; 1996 Jul; 35(28):9177-86. PubMed ID: 8703923
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cloning, direct expression, and purification of a snake venom cardiotoxin in Escherichia coli.
    Kumar TK; Yang PW; Lin SH; Wu CY; Lei B; Lo SJ; Tu SC; Yu C
    Biochem Biophys Res Commun; 1996 Feb; 219(2):450-6. PubMed ID: 8605008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved method for the isolation, characterization and examination of neuromuscular and toxic properties of selected polypeptide fractions from the crude venom of the Taiwan cobra Naja naja atra.
    Ständker L; Harvey AL; Fürst S; Mathes I; Forssmann WG; Escalona de Motta G; Béress L
    Toxicon; 2012 Sep; 60(4):623-31. PubMed ID: 22677803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.