These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28067976)

  • 1. Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling.
    Korshoj LE; Afsari S; Khan S; Chatterjee A; Nagpal P
    Small; 2017 Mar; 13(11):. PubMed ID: 28067976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of single nucleotide electronic states as nanoelectronic fingerprints for identification of DNA nucleobases, their protonated and unprotonated states, isomers, and tautomers.
    Ribot JC; Chatterjee A; Nagpal P
    J Phys Chem B; 2015 Apr; 119(15):4968-74. PubMed ID: 25793310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.
    Afsari S; Korshoj LE; Abel GR; Khan S; Chatterjee A; Nagpal P
    ACS Nano; 2017 Nov; 11(11):11169-11181. PubMed ID: 28968085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition Tunneling of Canonical and Modified RNA Nucleotides for Their Identification with the Aid of Machine Learning.
    Im J; Sen S; Lindsay S; Zhang P
    ACS Nano; 2018 Jul; 12(7):7067-7075. PubMed ID: 29932668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary base-pair-facilitated electron tunneling for electrically pinpointing complementary nucleobases.
    Ohshiro T; Umezawa Y
    Proc Natl Acad Sci U S A; 2006 Jan; 103(1):10-4. PubMed ID: 16373509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Conductive Nucleotide Analogue Facilitates Base-Calling in Quantum-Tunneling-Based DNA Sequencing.
    Furuhata T; Ohshiro T; Akimoto G; Ueki R; Taniguchi M; Sando S
    ACS Nano; 2019 May; 13(5):5028-5035. PubMed ID: 30888791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-Labeling-Assisted Detection of Nucleobase Modifications by Quantum-Tunneling-Based Single-Molecule Sensing.
    Furuhata T; Ohshiro T; Izuhara Y; Suzuki T; Ueki R; Taniguchi M; Sando S
    Chembiochem; 2020 Feb; 21(3):335-339. PubMed ID: 31267643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing electron correlation by means of ab initio scanning tunneling spectroscopy images of single molecules.
    Toroz D; Rontani M; Corni S
    J Chem Phys; 2011 Jan; 134(2):024104. PubMed ID: 21241077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Artificially Intelligent Nanopore for High-Throughput DNA Sequencing with a Machine-Learning-Aided Quantum-Tunneling Approach.
    Jena MK; Pathak B
    Nano Lett; 2023 Apr; 23(7):2511-2521. PubMed ID: 36799480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide and structural label identification in single RNA molecules with quantum tunneling spectroscopy.
    Abel GR; Korshoj LE; Otoupal PB; Khan S; Chatterjee A; Nagpal P
    Chem Sci; 2019 Jan; 10(4):1052-1063. PubMed ID: 30774901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial imaging of individual vibronic states in the interior of single molecules.
    Huan Q; Jiang Y; Zhang YY; Ham U; Ho W
    J Chem Phys; 2011 Jul; 135(1):014705. PubMed ID: 21744912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning tunneling microscopy and scanning tunneling spectroscopy studies of planar and nonplanar naphthalocyanine on graphite (0001). Part 2: tip-sample distance-dependent I-V spectroscopy.
    Gopakumar TG; Müller F; Hietschold M
    J Phys Chem B; 2006 Mar; 110(12):6060-5. PubMed ID: 16553417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational Smear Characterization and Binning of Single-Molecule Conductance Measurements for Enhanced Molecular Recognition.
    Korshoj LE; Afsari S; Chatterjee A; Nagpal P
    J Am Chem Soc; 2017 Nov; 139(43):15420-15428. PubMed ID: 29017006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning Tunneling Microscopy for Molecules: Effects of Electron Propagation into Vacuum.
    Grewal A; Leon CC; Kuhnke K; Kern K; Gunnarsson O
    ACS Nano; 2024 May; 18(19):12158-12167. PubMed ID: 38684019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational spectra (experimental and theoretical), molecular structure, natural bond orbital, HOMO-LUMO energy, Mulliken charge and thermodynamic analysis of N'-hydroxy-pyrimidine-2-carboximidamide by DFT approach.
    Jasmine NJ; Muthiah PT; Arunagiri C; Subashini A
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():215-25. PubMed ID: 25756689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nucleobase metalation on frontier molecular orbitals: potential implications for pi-stacking interactions with tryptophan.
    Anzellotti AI; Bayse CA; Farrell NP
    Inorg Chem; 2008 Nov; 47(22):10425-31. PubMed ID: 18939818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning-tunneling-spectroscopy-directed design of tailored deep-blue emitters.
    Sanning J; Ewen PR; Stegemann L; Schmidt J; Daniliuc CG; Koch T; Doltsinis NL; Wegner D; Strassert CA
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):786-91. PubMed ID: 25521940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band-gap tunneling states in DNA.
    Wang H; Lewis JP; Sankey OF
    Phys Rev Lett; 2004 Jul; 93(1):016401. PubMed ID: 15323997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of molecular orbitals in an individual single-molecule magnet Mn12 on Bi(111).
    Sun K; Park K; Xie J; Luo J; Yuan H; Xiong Z; Wang J; Xue Q
    ACS Nano; 2013 Aug; 7(8):6825-30. PubMed ID: 23829481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.