These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28068542)

  • 1. Cost-effective surface modification for Galinstan® lyophobicity.
    Kadlaskar SS; Yoo JH; Abhijeet ; Lee JB; Choi W
    J Colloid Interface Sci; 2017 Apr; 492():33-40. PubMed ID: 28068542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and Transformations of Room-Temperature Liquid Metal Interfaces - A Closer Look through Interfacial Tension.
    Handschuh-Wang S; Chen Y; Zhu L; Zhou X
    Chemphyschem; 2018 Jul; 19(13):1584-1592. PubMed ID: 29539243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan.
    Li G; Parmar M; Kim D; Lee JB; Lee DW
    Lab Chip; 2014 Jan; 14(1):200-9. PubMed ID: 24193151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor.
    Kim D; Thissen P; Viner G; Lee DW; Choi W; Chabal YJ; Lee JB
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):179-85. PubMed ID: 23206334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible and Stretchable Liquid Metal Electrodes Working at Sub-Zero Temperature and Their Applications.
    Xiao P; Kim JH; Seo S
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An oxidized liquid metal-based microfluidic platform for tunable electronic device applications.
    Li G; Parmar M; Lee DW
    Lab Chip; 2015 Feb; 15(3):766-75. PubMed ID: 25431832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is There a Relationship between Surface Wettability of Structured Surfaces and Lyophobicity toward Liquid Metals?
    Handschuh-Wang S; Zhu L; Gan T; Wang T
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superomniphobic and easily repairable coatings on copper substrates based on simple immersion or spray processes.
    Rangel TC; Michels AF; Horowitz F; Weibel DE
    Langmuir; 2015 Mar; 31(11):3465-72. PubMed ID: 25714008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltammetric analysis using a self-renewable non-mercury electrode.
    Surmann P; Zeyat H
    Anal Bioanal Chem; 2005 Nov; 383(6):1009-13. PubMed ID: 16228199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Modification with Gallium Coating as Nonwetting Surfaces for Gallium-Based Liquid Metal Droplet Manipulation.
    Chen Z; Lee JB
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35488-35495. PubMed ID: 31483593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces.
    Kleingartner JA; Srinivasan S; Mabry JM; Cohen RE; McKinley GH
    Langmuir; 2013 Nov; 29(44):13396-406. PubMed ID: 24070378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning and Reversible Actuation of Liquid Gallium Alloys by Preventing Adhesion on Rough Surfaces.
    Joshipura ID; Ayers HR; Castillo GA; Ladd C; Tabor CE; Adams JJ; Dickey MD
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44686-44695. PubMed ID: 30532957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spray-On Liquid-Metal Electrodes for Graphene Field-Effect Transistors.
    Melcher JL; Elassy KS; Ordonez RC; Hayashi C; Ohta AT; Garmire D
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30646573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting characteristic of ceramic to water and adhesive resin.
    Oh WS; Shen C; Alegre B; Anusavice KJ
    J Prosthet Dent; 2002 Dec; 88(6):616-21. PubMed ID: 12488855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric Actuation of Liquid Metal Droplets in Acidified Aqueous Electrolyte.
    Handschuh-Wang S; Chen Y; Zhu L; Gan T; Zhou X
    Langmuir; 2019 Jan; 35(2):372-381. PubMed ID: 30575374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smooth transportation of liquid metal droplets in a microchannel as detected by a serially arranged capacitive device.
    Konishi S; Kakehi Y; Mori F; Bono S
    Sci Rep; 2021 Mar; 11(1):7048. PubMed ID: 33782452
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Bhagwat S; Goralczyk A; Luitz M; Sharieff L; Kluck S; Hamza A; Nekoonam N; Kotz-Helmer F; Pezeshkpour P; Rapp BE
    ACS Appl Mater Interfaces; 2023 Feb; 15(7):10109-10122. PubMed ID: 36754363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.
    Kim TH; Ha SH; Jang NS; Kim J; Kim JH; Park JK; Lee DW; Lee J; Kim SH; Kim JM
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5289-95. PubMed ID: 25688451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.