BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28068609)

  • 1. Dual peptide-presenting hydrogels for controlling the phenotype of PC12 cells.
    Lee JW; Lee KY
    Colloids Surf B Biointerfaces; 2017 Apr; 152():36-41. PubMed ID: 28068609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of spacer arm length between adhesion ligand and alginate hydrogel on stem cell differentiation.
    Lee JW; Kim H; Lee KY
    Carbohydr Polym; 2016 Mar; 139():82-9. PubMed ID: 26794950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyaluronate-alginate hybrid hydrogels modified with biomimetic peptides for controlling the chondrocyte phenotype.
    An H; Lee JW; Lee HJ; Seo Y; Park H; Lee KY
    Carbohydr Polym; 2018 Oct; 197():422-430. PubMed ID: 30007631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alginate type and RGD density control myoblast phenotype.
    Rowley JA; Mooney DJ
    J Biomed Mater Res; 2002 May; 60(2):217-23. PubMed ID: 11857427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-interactive alginate hydrogels for bone tissue engineering.
    Alsberg E; Anderson KW; Albeiruti A; Franceschi RT; Mooney DJ
    J Dent Res; 2001 Nov; 80(11):2025-9. PubMed ID: 11759015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of conjugating RGD into 3D alginate hydrogels on adipogenic differentiation of human adipose-derived stromal cells.
    Kang SW; Cha BH; Park H; Park KS; Lee KY; Lee SH
    Macromol Biosci; 2011 May; 11(5):673-9. PubMed ID: 21337520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photofunctionalization of alginate hydrogels to promote adhesion and proliferation of human mesenchymal stem cells.
    Jeon O; Alsberg E
    Tissue Eng Part A; 2013 Jun; 19(11-12):1424-32. PubMed ID: 23327676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.
    Lee MK; Rich MH; Lee J; Kong H
    Biomaterials; 2015 Jul; 58():26-34. PubMed ID: 25941779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications.
    Sandvig I; Karstensen K; Rokstad AM; Aachmann FL; Formo K; Sandvig A; Skjåk-Bræk G; Strand BL
    J Biomed Mater Res A; 2015 Mar; 103(3):896-906. PubMed ID: 24826938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach.
    Comisar WA; Kazmers NH; Mooney DJ; Linderman JJ
    Biomaterials; 2007 Oct; 28(30):4409-17. PubMed ID: 17619056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presenting multiple adhesion ligands on hydrogels for control of PC12 phenotype.
    Lee JW; Lee KY
    J Control Release; 2011 Nov; 152 Suppl 1():e219-20. PubMed ID: 22195867
    [No Abstract]   [Full Text] [Related]  

  • 12. Interaction-tailored cell aggregates in alginate hydrogels for enhanced chondrogenic differentiation.
    Park H; Kim D; Lee KY
    J Biomed Mater Res A; 2017 Jan; 105(1):42-50. PubMed ID: 27529335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels.
    Mehta M; Madl CM; Lee S; Duda GN; Mooney DJ
    J Biomed Mater Res A; 2015 Nov; 103(11):3516-25. PubMed ID: 25953514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate hydrogels containing cell-interactive beads for bone formation.
    Bhat A; Hoch AI; Decaris ML; Leach JK
    FASEB J; 2013 Dec; 27(12):4844-52. PubMed ID: 24005905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interplay of peptide affinity and scaffold stiffness on neuronal differentiation of neural stem cells.
    Stukel JM; Willits RK
    Biomed Mater; 2018 Feb; 13(2):024102. PubMed ID: 29133625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Arg-Gly-Asp (RGD) sequence conjugated thermo-reversible gel via the PEG spacer arm as an extracellular matrix for a pheochromocytoma cell (PC12) culture.
    Park KH; Kim MH; Park SH; Lee HJ; Kim IK; Chung HM
    Biosci Biotechnol Biochem; 2004 Nov; 68(11):2224-9. PubMed ID: 15564658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and beta-glycerol phosphate.
    Shin H; Temenoff JS; Bowden GC; Zygourakis K; Farach-Carson MC; Yaszemski MJ; Mikos AG
    Biomaterials; 2005 Jun; 26(17):3645-54. PubMed ID: 15621255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound.
    Wang Y; Peng W; Liu X; Zhu M; Sun T; Peng Q; Zeng Y; Feng B; Zhi W; Weng J; Wang J
    Acta Biomater; 2014 Jun; 10(6):2518-28. PubMed ID: 24394634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel.
    Shu XZ; Ghosh K; Liu Y; Palumbo FS; Luo Y; Clark RA; Prestwich GD
    J Biomed Mater Res A; 2004 Feb; 68(2):365-75. PubMed ID: 14704979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the adhesion of fibroblasts by peptide containing an Arg-Gly-Asp sequence with poly(ethylene glycol) into a thermo-reversible hydrogel as a synthetic extracellular matrix.
    Park KH; Na K; Chung HM
    Biotechnol Lett; 2005 Feb; 27(4):227-31. PubMed ID: 15742141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.