These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 28068628)
1. Epoxy clerodane diterpene inhibits MCF-7 human breast cancer cell growth by regulating the expression of the functional apoptotic genes Cdkn2A, Rb1, mdm2 and p53. Subash-Babu P; Alshammari GM; Ignacimuthu S; Alshatwi AA Biomed Pharmacother; 2017 Mar; 87():388-396. PubMed ID: 28068628 [TBL] [Abstract][Full Text] [Related]
3. In vitro cytotoxic potential of friedelin in human MCF-7 breast cancer cell: Regulate early expression of Cdkn2a and pRb1, neutralize mdm2-p53 amalgamation and functional stabilization of p53. Subash-Babu P; Li DK; Alshatwi AA Exp Toxicol Pathol; 2017 Oct; 69(8):630-636. PubMed ID: 28619518 [TBL] [Abstract][Full Text] [Related]
4. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Alshatwi AA; Subash-Babu P; Antonisamy P Exp Toxicol Pathol; 2016 Jan; 68(1):89-97. PubMed ID: 26521020 [TBL] [Abstract][Full Text] [Related]
5. An anthraquinone derivative from Luffa acutangula induces apoptosis in human lung cancer cell line NCI-H460 through p53-dependent pathway. Vanajothi R; Srinivasan P J Recept Signal Transduct Res; 2016; 36(3):292-302. PubMed ID: 26585176 [TBL] [Abstract][Full Text] [Related]
6. Antiproliferative and apoptosis-induction studies of 5-hydroxy 3',4',7-trimethoxyflavone in human breast cancer cells MCF-7: an in vitro and in silico approach. Sudha A; Srinivasan P; Kanimozhi V; Palanivel K; Kadalmani B J Recept Signal Transduct Res; 2018 Jun; 38(3):179-190. PubMed ID: 29734849 [TBL] [Abstract][Full Text] [Related]
7. Spiro-oxindole derivative 5-chloro-4',5'-diphenyl-3'-(4-(2-(piperidin-1-yl) ethoxy) benzoyl) spiro[indoline-3,2'-pyrrolidin]-2-one triggers apoptosis in breast cancer cells via restoration of p53 function. Saxena R; Gupta G; Manohar M; Debnath U; Popli P; Prabhakar YS; Konwar R; Kumar S; Kumar A; Dwivedi A Int J Biochem Cell Biol; 2016 Jan; 70():105-17. PubMed ID: 26556313 [TBL] [Abstract][Full Text] [Related]
8. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544 [TBL] [Abstract][Full Text] [Related]
9. Synthetic phosphoethanolamine induces cell cycle arrest and apoptosis in human breast cancer MCF-7 cells through the mitochondrial pathway. Ferreira AK; Meneguelo R; Pereira A; Filho OM; Chierice GO; Maria DA Biomed Pharmacother; 2013 Jul; 67(6):481-7. PubMed ID: 23773853 [TBL] [Abstract][Full Text] [Related]
10. Induction of Apoptosis in MCF-7 Cells via Oxidative Stress Generation, Mitochondria-Dependent and Caspase-Independent Pathway by Ethyl Acetate Extract of Dillenia suffruticosa and Its Chemical Profile. Tor YS; Yazan LS; Foo JB; Wibowo A; Ismail N; Cheah YK; Abdullah R; Ismail M; Ismail IS; Yeap SK PLoS One; 2015; 10(6):e0127441. PubMed ID: 26047480 [TBL] [Abstract][Full Text] [Related]
11. Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells. De U; Son JY; Jeon Y; Ha SY; Park YJ; Yoon S; Ha KT; Choi WS; Lee BM; Kim IS; Kwak JH; Kim HS Food Chem Toxicol; 2019 Jan; 123():492-500. PubMed ID: 30458268 [TBL] [Abstract][Full Text] [Related]
12. P53-mediated cell cycle arrest and apoptosis through a caspase-3- independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells. Cui Q; Yu JH; Wu JN; Tashiro S; Onodera S; Minami M; Ikejima T Acta Pharmacol Sin; 2007 Jul; 28(7):1057-66. PubMed ID: 17588343 [TBL] [Abstract][Full Text] [Related]
13. Griffipavixanthone induces apoptosis of human breast cancer MCF-7 cells in vitro. Ma Y; Wang Y; Song B Breast Cancer; 2019 Mar; 26(2):190-197. PubMed ID: 30259331 [TBL] [Abstract][Full Text] [Related]
14. Anticancer Effects of a New SIRT Inhibitor, MHY2256, against Human Breast Cancer MCF-7 Cells via Regulation of MDM2-p53 Binding. Park EY; Woo Y; Kim SJ; Kim DH; Lee EK; De U; Kim KS; Lee J; Jung JH; Ha KT; Choi WS; Kim IS; Lee BM; Yoon S; Moon HR; Kim HS Int J Biol Sci; 2016; 12(12):1555-1567. PubMed ID: 27994519 [TBL] [Abstract][Full Text] [Related]
15. Novel triterpenoid 25-hydroxy-3-oxoolean-12-en-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Rabi T; Wang L; Banerjee S Breast Cancer Res Treat; 2007 Jan; 101(1):27-36. PubMed ID: 17028990 [TBL] [Abstract][Full Text] [Related]
16. Induction of p53 expression and apoptosis by a recombinant dual-target MDM2/MDMX inhibitory protein in wild-type p53 breast cancer cells. Geng QQ; Dong DF; Chen NZ; Wu YY; Li EX; Wang J; Wang SM Int J Oncol; 2013 Dec; 43(6):1935-42. PubMed ID: 24126697 [TBL] [Abstract][Full Text] [Related]
17. 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol inhibits MDM2 and induces apoptosis in breast cancer cells through a p53-independent pathway. Xu J; Han M; Shen J; Guan Q; Bai Z; Lang B; Zhang H; Li Z; Zuo D; Zhang W; Wu Y Cancer Lett; 2016 Dec; 383(1):9-17. PubMed ID: 27693458 [TBL] [Abstract][Full Text] [Related]
18. Wogonin induces apoptosis and down-regulates survivin in human breast cancer MCF-7 cells by modulating PI3K-AKT pathway. Huang KF; Zhang GD; Huang YQ; Diao Y Int Immunopharmacol; 2012 Feb; 12(2):334-41. PubMed ID: 22182776 [TBL] [Abstract][Full Text] [Related]
19. Identification of a new class of natural product MDM2 inhibitor: In vitro and in vivo anti-breast cancer activities and target validation. Qin JJ; Wang W; Voruganti S; Wang H; Zhang WD; Zhang R Oncotarget; 2015 Feb; 6(5):2623-40. PubMed ID: 25739118 [TBL] [Abstract][Full Text] [Related]
20. Taiwanin A inhibits MCF-7 cancer cell activity through induction of oxidative stress, upregulation of DNA damage checkpoint kinases, and activation of p53 and FasL/Fas signaling pathways. Shyur LF; Lee SH; Chang ST; Lo CP; Kuo YH; Wang SY Phytomedicine; 2010 Dec; 18(1):16-24. PubMed ID: 20637573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]