These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28068640)

  • 61. Disturbance of time orientation, attention, and verbal memory in amnesic patients with confabulation.
    Shingaki H; Park P; Ueda K; Murai T; Tsukiura T
    J Clin Exp Neuropsychol; 2016; 38(2):171-82. PubMed ID: 26588602
    [TBL] [Abstract][Full Text] [Related]  

  • 62. False recalls, but not false recognitions, at the DRM paradigm are increased in subjects reporting insomnia symptoms: An online study.
    Malloggi S; Conte F; De Rosa O; Cellini N; Di Iorio I; Ficca G; Giganti F
    Sleep Med; 2022 Dec; 100():347-353. PubMed ID: 36191402
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The contribution of the dorsolateral prefrontal cortex in full and divided encoding: a paired-pulse transcranial magnetic stimulation study.
    Blanchet S; Gagnon G; Schneider C
    Behav Neurol; 2010; 23(3):107-15. PubMed ID: 21098964
    [TBL] [Abstract][Full Text] [Related]  

  • 64. False memory in normal ageing: empirical data from the DRM paradigm and theoretical perspectives.
    Abichou K; La Corte V; Nicolas S; Piolino P
    Geriatr Psychol Neuropsychiatr Vieil; 2020 Mar; 18(1):65-75. PubMed ID: 32576546
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Establishing a causal role for left ventrolateral prefrontal cortex in value-directed memory encoding with high-definition transcranial direct current stimulation.
    Han LT; Cohen MS; He LK; Green LM; Knowlton BJ; Castel AD; Rissman J
    Neuropsychologia; 2023 Mar; 181():108489. PubMed ID: 36669696
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cerebellum and semantic memory: A TMS study using the DRM paradigm.
    Gatti D; Vecchi T; Mazzoni G
    Cortex; 2021 Feb; 135():78-91. PubMed ID: 33360762
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Awareness of the false memory manipulation and false recall for people's names as critical lures in the Deese-Roediger-McDermott paradigm.
    Mukai A
    Percept Mot Skills; 2005 Oct; 101(2):546-60. PubMed ID: 16383092
    [TBL] [Abstract][Full Text] [Related]  

  • 68. How are false memories distinguishable from true memories in the Deese-Roediger-McDermott paradigm? A review of the findings.
    Jou J; Flores S
    Psychol Res; 2013 Nov; 77(6):671-86. PubMed ID: 23266577
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Associative relatedness enhances recall and produces false memories in immediate serial recall.
    Tehan G
    Can J Exp Psychol; 2010 Dec; 64(4):266-72. PubMed ID: 21186910
    [TBL] [Abstract][Full Text] [Related]  

  • 70. False memory formation in cannabis users: a field study.
    Kloft L; Otgaar H; Blokland A; Garbaciak A; Monds LA; Ramaekers JG
    Psychopharmacology (Berl); 2019 Dec; 236(12):3439-3450. PubMed ID: 31250074
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Medial prefrontal decoupling from the default mode network benefits memory.
    Müller NCJ; Dresler M; Janzen G; Beckmann CF; Fernández G; Kohn N
    Neuroimage; 2020 Apr; 210():116543. PubMed ID: 31940475
    [TBL] [Abstract][Full Text] [Related]  

  • 72. False memory propensity in people reporting recovered memories of past lives.
    Meyersburg CA; Bogdan R; Gallo DA; McNally RJ
    J Abnorm Psychol; 2009 May; 118(2):399-404. PubMed ID: 19413413
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Lateralized processing of false memories and pseudoneglect in aging.
    Schmitz R; Dehon H; Peigneux P
    Cortex; 2013 May; 49(5):1314-24. PubMed ID: 22818903
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prior knowledge influences on hippocampus and medial prefrontal cortex interactions in subsequent memory.
    Bein O; Reggev N; Maril A
    Neuropsychologia; 2014 Nov; 64():320-30. PubMed ID: 25301385
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differences in the neural signature of remembering schema-congruent and schema-incongruent events.
    Brod G; Lindenberger U; Werkle-Bergner M; Shing YL
    Neuroimage; 2015 Aug; 117():358-66. PubMed ID: 26048620
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The role of attention at retrieval on the false recognition of negative emotional DRM lists.
    Shah D; Knott LM
    Memory; 2018 Feb; 26(2):269-276. PubMed ID: 28718338
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Toward a model of false recall: experimental manipulation of encoding context and the collection of verbal reports.
    Goodwin KA; Meissner CA; Ericsson KA
    Mem Cognit; 2001 Sep; 29(6):806-19. PubMed ID: 11716054
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Susceptibility to false memories in patients with ACoA aneurysm.
    Borsutzky S; Fujiwara E; Brand M; Markowitsch HJ
    Neuropsychologia; 2010 Aug; 48(10):2811-23. PubMed ID: 20488196
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Generative processing and emotional false memories: a generation "cost" for negative false memory formation but only after delay.
    Knott L; Wilkinson S; Hellenthal M; Shah D; Howe ML
    Cogn Emot; 2022 Nov; 36(7):1448-1457. PubMed ID: 36196863
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Post-learning arousal enhances veridical memory and reduces false memory in the Deese-Roediger-McDermott paradigm.
    Nielson KA; Correro AN
    Neurobiol Learn Mem; 2017 Oct; 144():198-207. PubMed ID: 28756031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.