BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 28068903)

  • 21. De novo leaf and root transcriptome analysis identified novel genes involved in steroidal sapogenin biosynthesis in Asparagus racemosus.
    Upadhyay S; Phukan UJ; Mishra S; Shukla RK
    BMC Genomics; 2014 Aug; 15(1):746. PubMed ID: 25174837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q; Gao Y
    BMC Genomics; 2016 May; 17():398. PubMed ID: 27225275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris.
    Li W; Zhang L; Ding Z; Wang G; Zhang Y; Gong H; Chang T; Zhang Y
    BMC Plant Biol; 2017 Feb; 17(1):54. PubMed ID: 28241786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Full-Length Transcriptome Survey and Expression Analysis of
    Deng Y; Zheng H; Yan Z; Liao D; Li C; Zhou J; Liao H
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30134624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High diversity of natural Dalmatian pyrethrum based on pyrethrin composition at intra- and interpopulation level.
    Varga F; Jeran N; Šatović Z; Biošić M; Grdiša M
    Phytochemistry; 2021 Dec; 192():112934. PubMed ID: 34536804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyrethrins protect pyrethrum leaves against attack by western flower thrips, Frankliniella occidentalis.
    Yang T; Stoopen G; Wiegers G; Mao J; Wang C; Dicke M; Jongsma MA
    J Chem Ecol; 2012 Apr; 38(4):370-7. PubMed ID: 22456949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bidirectional secretions from glandular trichomes of pyrethrum enable immunization of seedlings.
    Ramirez AM; Stoopen G; Menzel TR; Gols R; Bouwmeester HJ; Dicke M; Jongsma MA
    Plant Cell; 2012 Oct; 24(10):4252-65. PubMed ID: 23104830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De Novo RNA Sequencing and Expression Analysis of Aconitum carmichaelii to Analyze Key Genes Involved in the Biosynthesis of Diterpene Alkaloids.
    Rai M; Rai A; Kawano N; Yoshimatsu K; Takahashi H; Suzuki H; Kawahara N; Saito K; Yamazaki M
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29206203
    [No Abstract]   [Full Text] [Related]  

  • 29. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.
    Garg A; Agrawal L; Misra RC; Sharma S; Ghosh S
    BMC Genomics; 2015 Sep; 16(1):659. PubMed ID: 26328761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.
    Pal T; Malhotra N; Chanumolu SK; Chauhan RS
    Planta; 2015 Jul; 242(1):239-58. PubMed ID: 25904478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response.
    Zhang HB; Xia EH; Huang H; Jiang JJ; Liu BY; Gao LZ
    BMC Genomics; 2015 Apr; 16(1):298. PubMed ID: 25881092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A.
    Yang M; You W; Wu S; Fan Z; Xu B; Zhu M; Li X; Xiao Y
    BMC Genomics; 2017 Mar; 18(1):245. PubMed ID: 28330463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing.
    Xiao Z; Su J; Sun X; Li C; He L; Cheng S; Liu X
    Genes Genomics; 2018 Jun; 40(6):591-601. PubMed ID: 29892944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.
    Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y
    BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis.
    Castro JC; Maddox JD; Cobos M; Requena D; Zimic M; Bombarely A; Imán SA; Cerdeira LA; Medina AE
    BMC Genomics; 2015 Nov; 16():997. PubMed ID: 26602763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creating Pyrethrin Mimetic Phosphonates as Chemical Genetics Tools Targeting the GDSL Esterase/Lipase TcGLIP to Investigate Pyrethrin Biosynthesis.
    Matsuo N; Sugisaka Y; Aoyama S; Ihara M; Shinoyama H; Hosokawa M; Kamakura Y; Tanaka D; Tanabe Y; Matsuda K
    J Med Chem; 2023 Jun; 66(12):7959-7968. PubMed ID: 37309671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A trichome-specific linoleate lipoxygenase expressed during pyrethrin biosynthesis in pyrethrum.
    Ramirez AM; Yang T; Bouwmeester HJ; Jongsma MA
    Lipids; 2013 Oct; 48(10):1005-15. PubMed ID: 23893337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The degradation of the natural pyrethrins in crop storage.
    Atkinson BL; Blackman AJ; Faber H
    J Agric Food Chem; 2004 Jan; 52(2):280-7. PubMed ID: 14733509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Jasmonic acid is not a biosynthetic intermediate to produce the pyrethrolone moiety in pyrethrin II.
    Matsui R; Takiguchi K; Kuwata N; Oki K; Takahashi K; Matsuda K; Matsuura H
    Sci Rep; 2020 Apr; 10(1):6366. PubMed ID: 32286354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Requirement of catalytic-triad and related amino acids for the acyltransferase activity of Tanacetum cinerariifolium GDSL lipase/esterase TcGLIP for ester-bond formation in pyrethrin biosynthesis.
    Kikuta Y; Yamada G; Mitsumori T; Takeuchi T; Nakayama K; Katsuda Y; Hatanaka A; Matsuda K
    Biosci Biotechnol Biochem; 2013; 77(9):1822-5. PubMed ID: 24018659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.