These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28069162)

  • 1. A constrained extended Kalman filter for the optimal estimate of kinematics and kinetics of a sagittal symmetric exercise.
    Bonnet V; Dumas R; Cappozzo A; Joukov V; Daune G; Kulić D; Fraisse P; Andary S; Venture G
    J Biomech; 2017 Sep; 62():140-147. PubMed ID: 28069162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model.
    Bonnet V; Richard V; Camomilla V; Venture G; Cappozzo A; Dumas R
    J Biomech; 2017 Sep; 62():148-155. PubMed ID: 28551098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physically Consistent Whole-Body Kinematics Assessment Based on an RGB-D Sensor. Application to Simple Rehabilitation Exercises.
    Colombel J; Bonnet V; Daney D; Dumas R; Seilles A; Charpillet F
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of three-dimensional soft tissue artifacts in the canine hindlimb during passive stifle motion.
    Lin CC; Chang CL; Lu M; Lu TW; Wu CH
    BMC Vet Res; 2018 Dec; 14(1):389. PubMed ID: 30522489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A least-squares identification algorithm for estimating squat exercise mechanics using a single inertial measurement unit.
    Bonnet V; Mazzà C; Fraisse P; Cappozzo A
    J Biomech; 2012 May; 45(8):1472-7. PubMed ID: 22405496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse Visual-Inertial Measurement Units Placement for Gait Kinematics Assessment.
    Mallat R; Bonnet V; Dumas R; Adjel M; Venture G; Khalil M; Mohammed S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1300-1311. PubMed ID: 34138711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit.
    Bonnet V; Mazzà C; Fraisse P; Cappozzo A
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1920-6. PubMed ID: 23392337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knee joint kinematics and kinetics during the hop and cut after soft tissue artifact suppression: Time to reconsider ACL injury mechanisms?
    Smale KB; Potvin BM; Shourijeh MS; Benoit DL
    J Biomech; 2017 Sep; 62():132-139. PubMed ID: 28774468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating 3D kinematics and kinetics from virtual inertial sensor data through musculoskeletal movement simulations.
    Nitschke M; Dorschky E; Leyendecker S; Eskofier BM; Koelewijn AD
    Front Bioeng Biotechnol; 2024; 12():1285845. PubMed ID: 38628437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics influence of multibody kinematics optimisation for soft tissue artefact compensation.
    Pomarat Z; Guitteny S; Dumas R; Muller A
    J Biomech; 2023 Mar; 150():111514. PubMed ID: 36867951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimized Kalman filter for the estimate of trunk orientation from inertial sensors data during treadmill walking.
    Mazzà C; Donati M; McCamley J; Picerno P; Cappozzo A
    Gait Posture; 2012 Jan; 35(1):138-42. PubMed ID: 22047775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To what extent is joint and muscle mechanics predicted by musculoskeletal models sensitive to soft tissue artefacts?
    Lamberto G; Martelli S; Cappozzo A; Mazzà C
    J Biomech; 2017 Sep; 62():68-76. PubMed ID: 27622973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimization algorithm for joint mechanics estimate using inertial measurement unit data during a squat task.
    Bonnet V; Mazzà C; Fraisse P; Cappozzo A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3488-91. PubMed ID: 22255091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sensitivity analysis method for the body segment inertial parameters based on ground reaction and joint moment regressor matrices.
    Futamure S; Bonnet V; Dumas R; Venture G
    J Biomech; 2017 Nov; 64():85-92. PubMed ID: 28947159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of the soft tissue artefact rigid component.
    Camomilla V; Bonci T; Dumas R; Chèze L; Cappozzo A
    J Biomech; 2015 Jul; 48(10):1752-9. PubMed ID: 26091618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data.
    Nitschke M; Marzilger R; Leyendecker S; Eskofier BM; Koelewijn AD
    PeerJ; 2023; 11():e14852. PubMed ID: 36778146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A soft tissue artefact model driven by proximal and distal joint kinematics.
    Bonci T; Camomilla V; Dumas R; Chèze L; Cappozzo A
    J Biomech; 2014 Jul; 47(10):2354-61. PubMed ID: 24818796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.
    Ligorio G; Sabatini AM
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2033-43. PubMed ID: 25775483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear state-space modeling of human motion using 2-D marker observations.
    Vartiainen P; Bragge T; Arokoski JP; Karjalainen PA
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2167-78. PubMed ID: 24760898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.