These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28069165)

  • 1. On the quantification and visualization of transient periodic instabilities in pulsatile flows.
    Khan MO; Chnafa C; Gallo D; Molinari F; Morbiducci U; Steinman DA; Valen-Sendstad K
    J Biomech; 2017 Feb; 52():179-182. PubMed ID: 28069165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A turbulence model for pulsatile arterial flows.
    Younis BA; Berger SA
    J Biomech Eng; 2004 Oct; 126(5):578-84. PubMed ID: 15648810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-fidelity fluid structure interaction simulations of turbulent-like aneurysm flows reveals high-frequency narrowband wall vibrations: A stimulus of mechanobiological relevance?
    Souche A; Valen-Sendstad K
    J Biomech; 2022 Dec; 145():111369. PubMed ID: 36375263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the spectrographic representation of cardiovascular flow instabilities.
    Natarajan T; MacDonald DE; Najafi M; Khan MO; Steinman DA
    J Biomech; 2020 Sep; 110():109977. PubMed ID: 32827783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-band decomposition analysis of wall shear stress in pulsatile flows.
    Gizzi A; Bernaschi M; Bini D; Cherubini C; Filippi S; Melchionna S; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031902. PubMed ID: 21517520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the prevalence of flow instabilities from high-fidelity computational fluid dynamics of intracranial bifurcation aneurysms.
    Khan MO; Toro Arana V; Najafi M; MacDonald DE; Natarajan T; Valen-Sendstad K; Steinman DA
    J Biomech; 2021 Oct; 127():110683. PubMed ID: 34454331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved DPIV investigation of pulsatile flow in symmetric stenotic arteries--effects of phase angle.
    Karri S; Vlachos PP
    J Biomech Eng; 2010 Mar; 132(3):031010. PubMed ID: 20459198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.
    Ghalichi F; Deng X
    Biorheology; 2003; 40(6):637-54. PubMed ID: 14610313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation.
    Lantz J; Gårdhagen R; Karlsson M
    Med Eng Phys; 2012 Oct; 34(8):1139-48. PubMed ID: 22209366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apparent stresses in disturbed pulsatile flows.
    Lieber BB; Giddens DP
    J Biomech; 1988; 21(4):287-98. PubMed ID: 3384826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm.
    Valen-Sendstad K; Mardal KA; Mortensen M; Reif BA; Langtangen HP
    J Biomech; 2011 Nov; 44(16):2826-32. PubMed ID: 21924724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of the instabilities in modelling arteriovenous junction haemodynamics.
    Broderick SP; Houston JG; Walsh MT
    J Biomech; 2015 Oct; 48(13):3591-8. PubMed ID: 26315920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries.
    Tabe R; Ghalichi F; Hossainpour S; Ghasemzadeh K
    Biomed Mater Eng; 2016 Aug; 27(2-3):119-29. PubMed ID: 27567769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximating hemodynamics of cerebral aneurysms with steady flow simulations.
    Geers AJ; Larrabide I; Morales HG; Frangi AF
    J Biomech; 2014 Jan; 47(1):178-85. PubMed ID: 24262847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-Based Simulations Show Important Flow Fluctuations in a Normal Left Ventricle: What Could be the Implications?
    Chnafa C; Mendez S; Nicoud F
    Ann Biomed Eng; 2016 Nov; 44(11):3346-3358. PubMed ID: 27073110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.
    Avari H; Savory E; Rogers KA
    Cardiovasc Eng Technol; 2016 Mar; 7(1):44-57. PubMed ID: 26621672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics characterization of pulsatile flow in central and Sano shunts connected to the pulmonary arteries: importance of graft angulation on shear stress-induced, platelet-mediated thrombosis.
    Ascuitto R; Ross-Ascuitto N; Guillot M; Celestin C
    Interact Cardiovasc Thorac Surg; 2017 Sep; 25(3):414-421. PubMed ID: 28525548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.