These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28069165)

  • 21. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The decomposition of apparent stresses in disturbed pulsatile flow in the presence of large scale organized structures.
    Lieber BB
    J Biomech; 1990; 23(10):1047-60. PubMed ID: 2229088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multidirectional WSS disturbances in stenotic turbulent flows: A pre- and post-intervention study in an aortic coarctation.
    Andersson M; Lantz J; Ebbers T; Karlsson M
    J Biomech; 2017 Jan; 51():8-16. PubMed ID: 27919417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological flow analysis in significant human coronary artery stenoses.
    Banerjee RK; Back LH; Back MR; Cho YI
    Biorheology; 2003; 40(4):451-76. PubMed ID: 12775911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computation of flow fields and shear rates in an aortic bifurcation.
    Lee D; Chiu JJ
    Front Med Biol Eng; 1993; 5(1):23-9. PubMed ID: 8323879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of energy dissipation rate as a predictor of mechanical blood damage.
    Faghih MM; Sharp MK
    Artif Organs; 2019 Jul; 43(7):666-676. PubMed ID: 30588644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the discrimination between band-limited coherent and random apparent stresses in transitional pulsatile flow.
    Lieber BB; Giddens DP; Kitney RI; Talhami H
    J Biomech Eng; 1989 Feb; 111(1):42-6. PubMed ID: 2747232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pulsatile swirling flow on stenosed arterial blood flow.
    Ha H; Lee SJ
    Med Eng Phys; 2014 Sep; 36(9):1106-14. PubMed ID: 24984589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wall shear stress variations and unsteadiness of pulsatile blood-like flows in 90-degree bifurcations.
    van Wyk S; Prahl Wittberg L; Fuchs L
    Comput Biol Med; 2013 Sep; 43(8):1025-36. PubMed ID: 23816175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LES of additive and non-additive pulsatile flows in a model arterial stenosis.
    Molla MM; Paul MC; Roditi G
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):105-20. PubMed ID: 19657797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.
    Marrero VL; Tichy JA; Sahni O; Jansen KE
    J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms.
    Khan MO; Steinman DA; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27696717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
    Quinlan NJ; Dooley PN
    Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.
    Ziegler M; Lantz J; Ebbers T; Dyverfeldt P
    Magn Reson Med; 2017 Jun; 77(6):2310-2319. PubMed ID: 27350049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of anisotropic turbulence behavior in pulsatile blood flow.
    Andersson M; Karlsson M
    Biomech Model Mechanobiol; 2021 Apr; 20(2):491-506. PubMed ID: 33090334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm.
    Cavazzuti M; Atherton MA; Collins MW; Barozzi GS
    Proc Inst Mech Eng H; 2011 Jun; 225(6):597-609. PubMed ID: 22034743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peak systolic or maximum intra-aneurysmal hemodynamic condition? Implications on normalized flow variables.
    Morales HG; Bonnefous O
    J Biomech; 2014 Jul; 47(10):2362-70. PubMed ID: 24861633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates.
    Karmonik C; Yen C; Grossman RG; Klucznik R; Benndorf G
    Acta Neurochir (Wien); 2009 May; 151(5):479-85; discussion 485. PubMed ID: 19343271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fundamentals of turbulent flow spectrum imaging.
    Dillinger H; McGrath C; Guenthner C; Kozerke S
    Magn Reson Med; 2022 Mar; 87(3):1231-1249. PubMed ID: 34786764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.