These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28069200)

  • 21. [The effects on ethanol fermentation of Saccharomyces cerevisiae by adding Ca2+ and inositol].
    Zhao B; Zhang L
    Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):174-7. PubMed ID: 12555426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae.
    Aguilera A; Benítez T
    Arch Microbiol; 1985 Sep; 142(4):389-92. PubMed ID: 3904658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of growth rate on ethanol tolerance of Saccharomyces cerevisiae.
    Novotný C; Flieger M; Panos J; Dolezalová L
    Folia Microbiol (Praha); 1992; 37(1):43-6. PubMed ID: 1505861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858.
    Atiyeh H; Duvnjak Z
    Biotechnol Prog; 2002; 18(2):234-9. PubMed ID: 11934290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ethanol stress impairs protein folding in the endoplasmic reticulum and activates Ire1 in Saccharomyces cerevisiae.
    Miyagawa K; Ishiwata-Kimata Y; Kohno K; Kimata Y
    Biosci Biotechnol Biochem; 2014; 78(8):1389-91. PubMed ID: 25130742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Obtaining and selection of hexokinases-less strains of Saccharomyces cerevisiae for production of ethanol and fructose from sucrose.
    Carvalho RS; Gomes LH; Gonzaga do P Filho L; Tavares FC
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1131-7. PubMed ID: 18008068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.
    Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.
    Wu X; Zhang L; Jin X; Fang Y; Zhang K; Qi L; Zheng D
    Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase.
    Moreno AD; Ibarra D; Ballesteros I; González A; Ballesteros M
    Bioresour Technol; 2013 May; 135():239-45. PubMed ID: 23265821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of yeast ethanol tolerance by calcium and magnesium.
    Ciesarová Z; Smogrovicová D; Dömény Z
    Folia Microbiol (Praha); 1996; 41(6):485-8. PubMed ID: 9131803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histidine modified Fe
    Qiao C; Yang S; Ma Y; Wen L; Chu C; Luo H; Luo X; Hou C; Huo D
    World J Microbiol Biotechnol; 2024 Jun; 40(8):246. PubMed ID: 38902402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae.
    Yang KM; Lee NR; Woo JM; Choi W; Zimmermann M; Blank LM; Park JB
    FEMS Yeast Res; 2012 Sep; 12(6):675-84. PubMed ID: 22697060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Further investigation of relationships between membrane fluidity and ethanol tolerance in Saccharomyces cerevisiae.
    Ishmayana S; Kennedy UJ; Learmonth RP
    World J Microbiol Biotechnol; 2017 Nov; 33(12):218. PubMed ID: 29181637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae.
    Jung YJ; Park HD
    Biotechnol Lett; 2005 Dec; 27(23-24):1855-9. PubMed ID: 16328979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles for replicative deactivation in yeast-ethanol fermentations.
    Jones RP
    Crit Rev Biotechnol; 1990; 10(3):205-22. PubMed ID: 2268872
    [No Abstract]   [Full Text] [Related]  

  • 39. Role of ultrasound in assisted fermentation technologies for process enhancements.
    Pawar SV; Rathod VK
    Prep Biochem Biotechnol; 2020; 50(6):627-634. PubMed ID: 32065573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment.
    Wei P; Li Z; Lin Y; He P; Jiang N
    Biotechnol Lett; 2007 Oct; 29(10):1501-8. PubMed ID: 17541503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.