These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28069200)

  • 41. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol.
    Yang J; Ding MZ; Li BZ; Liu ZL; Wang X; Yuan YJ
    OMICS; 2012; 16(7-8):374-86. PubMed ID: 22734833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of ethanol on the temperature profile of Saccharomyces cerevisiae.
    van Uden N; da Cruz Duarte H
    Z Allg Mikrobiol; 1981; 21(10):743-50. PubMed ID: 7039151
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.
    Kim HS; Kim NR; Choi W
    Biotechnol Lett; 2011 Mar; 33(3):509-15. PubMed ID: 21063748
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inactivation effect of sonication and chlorination on Saccharomyces cerevisiae. Calorimetric analysis.
    Tsukamoto I; Constantinoiu E; Furuta M; Nishimura R; Maeda Y
    Ultrason Sonochem; 2004 May; 11(3-4):167-72. PubMed ID: 15081975
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system.
    Pérez-Gallardo RV; Briones LS; Díaz-Pérez AL; Gutiérrez S; Rodríguez-Zavala JS; Campos-García J
    FEMS Yeast Res; 2013 Dec; 13(8):804-19. PubMed ID: 24028658
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey.
    Rodrigues B; Lima-Costa ME; Constantino A; Raposo S; Felizardo C; Gonçalves D; Fernandes T; Dionísio L; Peinado JM
    Enzyme Microb Technol; 2016 Oct; 92():41-8. PubMed ID: 27542743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol--a review.
    Laluce C; Schenberg AC; Gallardo JC; Coradello LF; Pombeiro-Sponchiado SR
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1908-26. PubMed ID: 22391693
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents.
    Kim SK; Jo JH; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2017 May; 40(5):683-691. PubMed ID: 28120125
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol.
    Wang Y; Zhang S; Liu H; Zhang L; Yi C; Li H
    J Basic Microbiol; 2015 Dec; 55(12):1417-26. PubMed ID: 26265555
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E; Sedlak M; Ho NW; Mosier NS
    FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae.
    Wright J; Bellissimi E; de Hulster E; Wagner A; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2011 May; 11(3):299-306. PubMed ID: 21251209
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae.
    Park SE; Koo HM; Park YK; Park SM; Park JC; Lee OK; Park YC; Seo JH
    Bioresour Technol; 2011 May; 102(10):6033-8. PubMed ID: 21421300
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of co-culturing non-Saccharomyces yeasts with S. cerevisiae on the sugar cane spirit (cachaça) fermentation process.
    Duarte WF; Amorim JC; Schwan RF
    Antonie Van Leeuwenhoek; 2013 Jan; 103(1):175-94. PubMed ID: 22911390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Continuous ethanol production from cassava through simultaneous saccharification and fermentation by self-flocculating yeast Saccharomyces cerevisiae CHFY0321.
    Choi GW; Kang HW; Moon SK; Chung BW
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1517-27. PubMed ID: 19396636
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Effect of flocculence of a self-flocculating yeast on its tolerance to ethanol and the mechanism].
    Hu CK; Bai FW; An LJ
    Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):123-8. PubMed ID: 15859341
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae.
    Meneghin MC; Bassi AP; Codato CB; Reis VR; Ceccato-Antonini SR
    Yeast; 2013 Aug; 30(8):295-305. PubMed ID: 23658026
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ETP1/YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol.
    Snowdon C; Schierholtz R; Poliszczuk P; Hughes S; van der Merwe G
    FEMS Yeast Res; 2009 May; 9(3):372-80. PubMed ID: 19416103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selection and adaptation of Saccharomyces cerevisae to increased ethanol tolerance and production.
    Fiedurek J; Skowronek M; Gromada A
    Pol J Microbiol; 2011; 60(1):51-8. PubMed ID: 21630574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae.
    Hu CK; Bai FW; An LJ
    Sheng Wu Gong Cheng Xue Bao; 2005 Sep; 21(5):809-13. PubMed ID: 16285526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.