These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 28069305)

  • 1. Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation.
    Balseiro-Romero M; Gkorezis P; Kidd PS; Van Hamme J; Weyens N; Monterroso C; Vangronsveld J
    Sci Total Environ; 2017 Mar; 581-582():676-688. PubMed ID: 28069305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content.
    Becerra-Castro C; Kidd PS; Rodríguez-Garrido B; Monterroso C; Santos-Ucha P; Prieto-Fernández A
    Environ Pollut; 2013 Jul; 178():202-10. PubMed ID: 23583940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria.
    Gutiérrez-Ginés MJ; Hernández AJ; Pérez-Leblic MI; Pastor J; Vangronsveld J
    J Environ Manage; 2014 Oct; 143():197-207. PubMed ID: 24912107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil.
    Afzal M; Yousaf S; Reichenauer TG; Sessitsch A
    Int J Phytoremediation; 2012 Jan; 14(1):35-47. PubMed ID: 22567693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Degradation of Diesel in the Rhizosphere of after Inoculation with Diesel-Degrading and Plant Growth-Promoting Bacterial Strains.
    Balseiro-Romero M; Gkorezis P; Kidd PS; Vangronsveld J; Monterroso C
    J Environ Qual; 2016 May; 45(3):924-32. PubMed ID: 27136159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541.
    El Aafi N; Brhada F; Dary M; Maltouf AF; Pajuelo E
    Int J Phytoremediation; 2012 Mar; 14(3):261-74. PubMed ID: 22567710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of endosulfan tolerant bacterial isolates (Delftia lacustris IITISM30 and Klebsiella aerogenes IITISM42) with Helianthus annuus on remediation of endosulfan from contaminated soil.
    Rani R; Kumar V; Gupta P; Chandra A
    Ecotoxicol Environ Saf; 2019 Jan; 168():315-323. PubMed ID: 30390530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils.
    Kong Z; Wu Z; Glick BR; He S; Huang C; Wu L
    Ecotoxicol Environ Saf; 2019 Nov; 183():109504. PubMed ID: 31421537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency.
    Wang Q; Ma L; Zhou Q; Chen B; Zhang X; Wu Y; Pan F; Huang L; Yang X; Feng Y
    Chemosphere; 2019 Nov; 234():769-776. PubMed ID: 31238273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.
    Ma Y; Rajkumar M; Moreno A; Zhang C; Freitas H
    Chemosphere; 2017 Oct; 185():75-85. PubMed ID: 28686889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 using Helianthus annuus on degradation of endosulfan from contaminated soil.
    Rani R; Kumar V; Usmani Z; Gupta P; Chandra A
    Chemosphere; 2019 Jun; 225():479-489. PubMed ID: 30897471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil.
    Burges A; Epelde L; Blanco F; Becerril JM; Garbisu C
    Sci Total Environ; 2017 Apr; 584-585():329-338. PubMed ID: 28040210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review.
    Ashraf MA; Hussain I; Rasheed R; Iqbal M; Riaz M; Arif MS
    J Environ Manage; 2017 Aug; 198(Pt 1):132-143. PubMed ID: 28456029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.
    Tara N; Afzal M; Ansari TM; Tahseen R; Iqbal S; Khan QM
    Int J Phytoremediation; 2014; 16(7-12):1268-77. PubMed ID: 24933917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation.
    Fumagalli P; Comolli R; Ferrè C; Ghiani A; Gentili R; Citterio S
    J Environ Manage; 2014 Dec; 145():35-42. PubMed ID: 24992047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of the plant growth-promoting rhizobacterium Rhodococcus qingshengii LMR356 in mitigating lead stress impact on Sulla spinosissima L.
    Oubohssaine M; Sbabou L; Aurag J
    Environ Sci Pollut Res Int; 2024 Jul; 31(33):46002-46022. PubMed ID: 38980484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17.
    Wang Q; Xiong D; Zhao P; Yu X; Tu B; Wang G
    J Appl Microbiol; 2011 Nov; 111(5):1065-74. PubMed ID: 21895895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of dynamic microbial community structure and rhizosphere interactions during bioaugmented phytoremediation of petroleum contaminated soil by a newly designed rhizobox system.
    Yang KM; Poolpak T; Pokethitiyook P; Kruatrachue M
    Int J Phytoremediation; 2022; 24(14):1505-1517. PubMed ID: 35266855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoextraction of iron from contaminated soils by inoculation of iron-tolerant plant growth-promoting bacteria in Brassica juncea L. Czern.
    Jinal HN; Gopi K; Prittesh P; Kartik VP; Amaresan N
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):32815-32823. PubMed ID: 31502049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.