BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 28069511)

  • 41. In vitro degradation and cytotoxicity response of Mg-4% Zn-0.5% Zr (ZK40) alloy as a potential biodegradable material.
    Hong D; Saha P; Chou DT; Lee B; Collins BE; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8534-47. PubMed ID: 23851175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study on biodegradation of the second phase Mg17Al12 in Mg-Al-Zn alloys: in vitro experiment and thermodynamic calculation.
    Liu C; Yang H; Wan P; Wang K; Tan L; Yang K
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():1-7. PubMed ID: 24411344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements.
    Chen Y; Dou J; Yu H; Chen C
    J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition.
    Chen S; Guan S; Li W; Wang H; Chen J; Wang Y; Wang H
    J Biomed Mater Res B Appl Biomater; 2012 Feb; 100(2):533-43. PubMed ID: 22120974
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes.
    Hakimi O; Aghion E; Goldman J
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():226-32. PubMed ID: 25842129
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro and in vivo corrosion measurements of magnesium alloys.
    Witte F; Fischer J; Nellesen J; Crostack HA; Kaese V; Pisch A; Beckmann F; Windhagen H
    Biomaterials; 2006 Mar; 27(7):1013-8. PubMed ID: 16122786
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A surface-engineered multifunctional TiO
    Lin Z; Wu S; Liu X; Qian S; Chu PK; Zheng Y; Cheung KMC; Zhao Y; Yeung KWK
    Acta Biomater; 2019 Nov; 99():495-513. PubMed ID: 31518705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications.
    Drynda A; Hassel T; Bach FW; Peuster M
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):649-60. PubMed ID: 24976236
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Research on an Mg-Zn alloy as a degradable biomaterial.
    Zhang S; Zhang X; Zhao C; Li J; Song Y; Xie C; Tao H; Zhang Y; He Y; Jiang Y; Bian Y
    Acta Biomater; 2010 Feb; 6(2):626-40. PubMed ID: 19545650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of chemical heterogeneity and microstructure on the corrosion resistance of biodegradable WE43 magnesium alloys.
    Mraied H; Wang W; Cai W
    J Mater Chem B; 2019 Oct; 7(41):6399-6411. PubMed ID: 31642847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling in vivo corrosion of AZ31 as temporary biodegradable implants. Experimental validation in rats.
    Montoya R; Iglesias C; Escudero ML; García-Alonso MC
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():127-33. PubMed ID: 24907745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD).
    Mhaede M; Pastorek F; Hadzima B
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():330-5. PubMed ID: 24863232
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys.
    Zhao Y; Jamesh MI; Li WK; Wu G; Wang C; Zheng Y; Yeung KW; Chu PK
    Acta Biomater; 2014 Jan; 10(1):544-56. PubMed ID: 24140607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31.
    Gray-Munro JE; Strong M
    J Biomed Mater Res A; 2009 Aug; 90(2):339-50. PubMed ID: 18508354
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review.
    Kiani F; Wen C; Li Y
    Acta Biomater; 2020 Feb; 103():1-23. PubMed ID: 31881312
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys.
    Cipriano AF; Sallee A; Tayoba M; Cortez Alcaraz MC; Lin A; Guan RG; Zhao ZY; Liu H
    Acta Biomater; 2017 Jan; 48():499-520. PubMed ID: 27746360
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antibacterial biodegradable Mg-Ag alloys.
    Tie D; Feyerabend F; Müller WD; Schade R; Liefeith K; Kainer KU; Willumeit R
    Eur Cell Mater; 2013 Jun; 25():284-98; discussion 298. PubMed ID: 23771512
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents.
    Mao L; Shen L; Niu J; Zhang J; Ding W; Wu Y; Fan R; Yuan G
    Nanoscale; 2013 Oct; 5(20):9517-22. PubMed ID: 23989064
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo corrosion behaviour of magnesium alloy in association with surrounding tissue response in rats.
    Miura C; Shimizu Y; Imai Y; Mukai T; Yamamoto A; Sano Y; Ikeo N; Isozaki S; Takahashi T; Oikawa M; Kumamoto H; Tachi M
    Biomed Mater; 2016 Mar; 11(2):025001. PubMed ID: 26947358
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Initial organ distribution and biological safety of Mg
    Sato A; Shimizu Y; Imai Y; Mukai T; Yamamoto A; Miura C; Muraki K; Sano Y; Ikeo N; Tachi M
    Biomed Mater; 2018 Mar; 13(3):035006. PubMed ID: 29359710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.