BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 28069778)

  • 1. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function.
    Boffi JC; Marcovich I; Gill-Thind JK; Corradi J; Collins T; Lipovsek MM; Moglie M; Plazas PV; Craig PO; Millar NS; Bouzat C; Elgoyhen AB
    Mol Pharmacol; 2017 Mar; 91(3):250-262. PubMed ID: 28069778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoichiometry of the alpha9alpha10 nicotinic cholinergic receptor.
    Plazas PV; Katz E; Gomez-Casati ME; Bouzat C; Elgoyhen AB
    J Neurosci; 2005 Nov; 25(47):10905-12. PubMed ID: 16306403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence of multiple binding sites on α9α10 nAChR receptors alludes to stoichiometric-dependent action of the α-conotoxin, Vc1.1.
    Indurthi DC; Pera E; Kim HL; Chu C; McLeod MD; McIntosh JM; Absalom NL; Chebib M
    Biochem Pharmacol; 2014 May; 89(1):131-40. PubMed ID: 24548457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular interaction of α-conotoxin RgIA with the rat α9α10 nicotinic acetylcholine receptor.
    Azam L; Papakyriakou A; Zouridakis M; Giastas P; Tzartos SJ; McIntosh JM
    Mol Pharmacol; 2015 May; 87(5):855-64. PubMed ID: 25740413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological properties of alpha 9 alpha 10 nicotinic acetylcholine receptors revealed by heterologous expression of subunit chimeras.
    Baker ER; Zwart R; Sher E; Millar NS
    Mol Pharmacol; 2004 Feb; 65(2):453-60. PubMed ID: 14742688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. αS-conotoxin GVIIIB potently and selectively blocks α9α10 nicotinic acetylcholine receptors.
    Christensen SB; Bandyopadhyay PK; Olivera BM; McIntosh JM
    Biochem Pharmacol; 2015 Aug; 96(4):349-56. PubMed ID: 26074268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of rat α9α10 nicotinic acetylcholine receptor with α-conotoxin RgIA and Vc1.1: Insights from docking, molecular dynamics and binding free energy contributions.
    Li R; Li X; Jiang J; Tian Y; Liu D; Zhangsun D; Fu Y; Wu Y; Luo S
    J Mol Graph Model; 2019 Nov; 92():55-64. PubMed ID: 31330438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells.
    Elgoyhen AB; Vetter DE; Katz E; Rothlin CV; Heinemann SF; Boulter J
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3501-6. PubMed ID: 11248107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galanthamine and non-competitive inhibitor binding to ACh-binding protein: evidence for a binding site on non-alpha-subunit interfaces of heteromeric neuronal nicotinic receptors.
    Hansen SB; Taylor P
    J Mol Biol; 2007 Jun; 369(4):895-901. PubMed ID: 17481657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of Dalpha6 and Dalpha7 nicotinic acetylcholine receptor subunits from Drosophila: formation of a high-affinity alpha-bungarotoxin binding site revealed by expression of subunit chimeras.
    Lansdell SJ; Millar NS
    J Neurochem; 2004 Jul; 90(2):479-89. PubMed ID: 15228604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional expression of human α9* nicotinic acetylcholine receptors in X. laevis oocytes is dependent on the α9 subunit 5' UTR.
    Filchakova O; McIntosh JM
    PLoS One; 2013; 8(5):e64655. PubMed ID: 23717646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors.
    Arias HR
    Neurochem Int; 2000 Jun; 36(7):595-645. PubMed ID: 10771117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of rare variations reveals roles of amino acid residues in the N-terminal extracellular domain of nicotinic acetylcholine receptor (nAChR) alpha6 subunit in the functional expression of human alpha6*-nAChRs.
    Dash B; Li MD
    Mol Brain; 2014 May; 7():35. PubMed ID: 24886653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic differences in calcium permeability of the auditory hair cell cholinergic nicotinic receptor.
    Lipovsek M; Im GJ; Franchini LF; Pisciottano F; Katz E; Fuchs PA; Elgoyhen AB
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4308-13. PubMed ID: 22371598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexpression and spatial association of nicotinic acetylcholine receptor subunits alpha7 and alpha10 in rat sympathetic neurons.
    Lips KS; König P; Schätzle K; Pfeil U; Krasteva G; Spies M; Haberberger RV; Grando SA; Kummer W
    J Mol Neurosci; 2006; 30(1-2):15-6. PubMed ID: 17192608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel human nicotinic receptor subunit, alpha10, that confers functionality to the alpha9-subunit.
    Sgard F; Charpantier E; Bertrand S; Walker N; Caput D; Graham D; Bertrand D; Besnard F
    Mol Pharmacol; 2002 Jan; 61(1):150-9. PubMed ID: 11752216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential involvement of α4β2, α7 and α9α10 nicotinic acetylcholine receptors in B lymphocyte activation in vitro.
    Koval L; Lykhmus O; Zhmak M; Khruschov A; Tsetlin V; Magrini E; Viola A; Chernyavsky A; Qian J; Grando S; Komisarenko S; Skok M
    Int J Biochem Cell Biol; 2011 Apr; 43(4):516-24. PubMed ID: 21146628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The α9α10 acetylcholine receptor: A non-neuronal nicotinic receptor.
    Elgoyhen AB
    Pharmacol Res; 2023 Apr; 190():106735. PubMed ID: 36931539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal Structure of the Monomeric Extracellular Domain of α9 Nicotinic Receptor Subunit in Complex With α-Conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding to α9α10 Nicotinic Receptors.
    Zouridakis M; Papakyriakou A; Ivanov IA; Kasheverov IE; Tsetlin V; Tzartos S; Giastas P
    Front Pharmacol; 2019; 10():474. PubMed ID: 31118896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels.
    Lansdell SJ; Collins T; Goodchild J; Millar NS
    BMC Neurosci; 2012 Jun; 13():73. PubMed ID: 22727315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.