These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162 [TBL] [Abstract][Full Text] [Related]
5. Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch. Wu MC; Lowe PT; Robinson CJ; Vincent HA; Dixon N; Leigh J; Micklefield J J Am Chem Soc; 2015 Jul; 137(28):9015-21. PubMed ID: 26106809 [TBL] [Abstract][Full Text] [Related]
6. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure. Suddala KC; Rinaldi AJ; Feng J; Mustoe AM; Eichhorn CD; Liberman JA; Wedekind JE; Al-Hashimi HM; Brooks CL; Walter NG Nucleic Acids Res; 2013 Dec; 41(22):10462-75. PubMed ID: 24003028 [TBL] [Abstract][Full Text] [Related]
8. Structure and function analysis of a type III preQ Schroeder GM; Kiliushik D; Jenkins JL; Wedekind JE J Biol Chem; 2023 Oct; 299(10):105208. PubMed ID: 37660906 [TBL] [Abstract][Full Text] [Related]
9. Coupling Green Fluorescent Protein Expression with Chemical Modification to Probe Functionally Relevant Riboswitch Conformations in Live Bacteria. Dutta D; Belashov IA; Wedekind JE Biochemistry; 2018 Aug; 57(31):4620-4628. PubMed ID: 29897738 [TBL] [Abstract][Full Text] [Related]
10. Superior cellular activities of azido- over amino-functionalized ligands for engineered preQ Neuner E; Frener M; Lusser A; Micura R RNA Biol; 2018; 15(10):1376-1383. PubMed ID: 30332908 [TBL] [Abstract][Full Text] [Related]
11. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Roth A; Winkler WC; Regulski EE; Lee BW; Lim J; Jona I; Barrick JE; Ritwik A; Kim JN; Welz R; Iwata-Reuyl D; Breaker RR Nat Struct Mol Biol; 2007 Apr; 14(4):308-17. PubMed ID: 17384645 [TBL] [Abstract][Full Text] [Related]
12. A chemical probe based on the PreQ Balaratnam S; Rhodes C; Bume DD; Connelly C; Lai CC; Kelley JA; Yazdani K; Homan PJ; Incarnato D; Numata T; Schneekloth JS Nat Commun; 2021 Oct; 12(1):5856. PubMed ID: 34615874 [TBL] [Abstract][Full Text] [Related]
13. Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold. Liberman JA; Salim M; Krucinska J; Wedekind JE Nat Chem Biol; 2013 Jun; 9(6):353-5. PubMed ID: 23584677 [TBL] [Abstract][Full Text] [Related]
14. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression. Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639 [TBL] [Abstract][Full Text] [Related]
15. Computational study of unfolding and regulation mechanism of preQ1 riboswitches. Gong Z; Zhao Y; Chen C; Xiao Y PLoS One; 2012; 7(9):e45239. PubMed ID: 23028870 [TBL] [Abstract][Full Text] [Related]
18. Structural determinants for ligand capture by a class II preQ1 riboswitch. Kang M; Eichhorn CD; Feigon J Proc Natl Acad Sci U S A; 2014 Feb; 111(6):E663-71. PubMed ID: 24469808 [TBL] [Abstract][Full Text] [Related]
19. Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing. Widom JR; Nedialkov YA; Rai V; Hayes RL; Brooks CL; Artsimovitch I; Walter NG Mol Cell; 2018 Nov; 72(3):541-552.e6. PubMed ID: 30388413 [TBL] [Abstract][Full Text] [Related]
20. A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control. Schroeder GM; Cavender CE; Blau ME; Jenkins JL; Mathews DH; Wedekind JE Nat Commun; 2022 Jan; 13(1):199. PubMed ID: 35017488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]