These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28070691)

  • 1. Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition.
    Wongsupa N; Nuntanaranont T; Kamolmattayakul S; Thuaksuban N
    J Mater Sci Mater Med; 2017 Feb; 28(2):25. PubMed ID: 28070691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects.
    Wongsupa N; Nuntanaranont T; Kamolmattayakul S; Thuaksuban N
    J Mater Sci Mater Med; 2017 May; 28(5):77. PubMed ID: 28386853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrafibrillar-silicified collagen scaffolds enhance the osteogenic capacity of human dental pulp stem cells.
    Niu LN; Sun JQ; Li QH; Jiao K; Shen LJ; Wu D; Tay F; Chen JH
    J Dent; 2014 Jul; 42(7):839-49. PubMed ID: 24705068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds.
    Alipour M; Aghazadeh M; Akbarzadeh A; Vafajoo Z; Aghazadeh Z; Raeisdasteh Hokmabad V
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3431-3437. PubMed ID: 31411067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells.
    Tien N; Lee JJ; Lee AK; Lin YH; Chen JX; Kuo TY; Shie MY
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.
    Wang L; Zhang C; Li C; Weir MD; Wang P; Reynolds MA; Zhao L; Xu HH
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1125-36. PubMed ID: 27612810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical characteristics and biocompatibility of the polycaprolactone-biphasic calcium phosphate scaffolds fabricated using the modified melt stretching and multilayer deposition.
    Thuaksuban N; Luntheng T; Monmaturapoj N
    J Biomater Appl; 2016 May; 30(10):1460-72. PubMed ID: 27013219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration.
    Park H; Lim DJ; Lee SH; Park H
    J Biomed Nanotechnol; 2016 Nov; 12(11):2076-82. PubMed ID: 29364624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regenerative endodontics.
    Moonesi Rad R; Atila D; Akgün EE; Evis Z; Keskin D; Tezcaner A
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():928-948. PubMed ID: 30948129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating osteogenic potential of a 3D-printed bioceramic-based scaffold for critical-sized defect treatment: an in vivo and in vitro investigation.
    Safiaghdam H; Baniameri S; Aminianfar H; Mohajeri SF; Dehghan MM; Tayebi L; Nokhbatolfoghahaei H; Khojasteh A
    In Vitro Cell Dev Biol Anim; 2024 Jun; 60(6):657-666. PubMed ID: 38743380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration.
    Flores-Cedillo ML; Alvarado-Estrada KN; Pozos-Guillén AJ; Murguía-Ibarra JS; Vidal MA; Cervantes-Uc JM; Rosales-Ibáñez R; Cauich-Rodríguez JV
    J Mater Sci Mater Med; 2016 Feb; 27(2):35. PubMed ID: 26704552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic potential of human dental pulp stem cells cultured onto poly-ε-caprolactone/poly (rotaxane) scaffolds.
    Oliveira NK; Salles THC; Pedroni AC; Miguita L; D'Ávila MA; Marques MM; Deboni MCZ
    Dent Mater; 2019 Dec; 35(12):1740-1749. PubMed ID: 31543375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.
    Prabha RD; Kraft DCE; Harkness L; Melsen B; Varma H; Nair PD; Kjems J; Kassem M
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1537-e1548. PubMed ID: 28967188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells.
    Xia Y; Chen H; Zhang F; Wang L; Chen B; Reynolds MA; Ma J; Schneider A; Gu N; Xu HHK
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):423-433. PubMed ID: 29355052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of the chondrogenic differentiation capacity of human dental pulp stem cells via chondroitin sulfate-coated polycaprolactone-MWCNT nanofibers.
    Eldeen GN; Elkhooly TA; El Bassyouni GT; Hamdy TM; Hawash AR; Aly RM
    Sci Rep; 2024 Jul; 14(1):16396. PubMed ID: 39013921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair.
    Ma L; Yu Y; Liu H; Sun W; Lin Z; Liu C; Miao L
    Sci Rep; 2021 Jan; 11(1):1027. PubMed ID: 33441759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of polycaprolactone-biphasic calcium phosphate scaffolds on enhancing growth and differentiation of osteoblasts.
    Thuaksuban N; Monmaturapoj N; Luntheng T
    Biomed Mater Eng; 2018; 29(2):159-176. PubMed ID: 29457591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous clinoptilolite-nano biphasic calcium phosphate scaffolds loaded with human dental pulp stem cells for load bearing orthopedic applications.
    Alshemary AZ; Pazarçeviren AE; Keskin D; Tezcaner A; Hussain R; Evis Z
    Biomed Mater; 2019 Aug; 14(5):055010. PubMed ID: 31362280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.