These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28070691)

  • 21. Fluorapatite-modified scaffold on dental pulp stem cell mineralization.
    Guo T; Li Y; Cao G; Zhang Z; Chang S; Czajka-Jakubowska A; Nör JE; Clarkson BH; Liu J
    J Dent Res; 2014 Dec; 93(12):1290-5. PubMed ID: 25139361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro.
    Jensen J; Kraft DC; Lysdahl H; Foldager CB; Chen M; Kristiansen AA; Rölfing JH; Bünger CE
    Tissue Eng Part A; 2015 Feb; 21(3-4):729-39. PubMed ID: 25252795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells.
    Zheng L; Yang F; Shen H; Hu X; Mochizuki C; Sato M; Wang S; Zhang Y
    Biomaterials; 2011 Oct; 32(29):7053-9. PubMed ID: 21722953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteogenic stimulation of human dental pulp stem cells with a novel gelatin-hydroxyapatite-tricalcium phosphate scaffold.
    Gu Y; Bai Y; Zhang D
    J Biomed Mater Res A; 2018 Jul; 106(7):1851-1861. PubMed ID: 29520937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced osteogenic differentiation and mineralization of human dental pulp stem cells using Prunus amygdalus amara (bitter almond) incorporated nanofibrous scaffold.
    Valizadeh N; Salehi R; Aghazadeh M; Alipour M; Sadeghzadeh H; Mahkam M
    J Mech Behav Biomed Mater; 2023 Jun; 142():105790. PubMed ID: 37104899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A
    J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modified porous scaffolds of silk fibroin with mimicked microenvironment based on decellularized pulp/fibronectin for designed performance biomaterials in maxillofacial bone defect.
    Sangkert S; Kamonmattayakul S; Chai WL; Meesane J
    J Biomed Mater Res A; 2017 Jun; 105(6):1624-1636. PubMed ID: 28000362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Silver-Functionalized Poly(ε-Caprolactone)/Biphasic Calcium Phosphate Scaffolds Designed to Counteract Post-Surgical Infections in Orthopedic Applications.
    Comini S; Sparti R; Coppola B; Mohammadi M; Scutera S; Menotti F; Banche G; Cuffini AM; Palmero P; Allizond V
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA.
    Buyuksungur S; Hasirci V; Hasirci N
    J Biomed Mater Res A; 2021 Dec; 109(12):2425-2437. PubMed ID: 34033241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of PCL/carbon material scaffolds for bone regeneration.
    Wang W; Huang B; Byun JJ; Bártolo P
    J Mech Behav Biomed Mater; 2019 May; 93():52-60. PubMed ID: 30769234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells.
    Kwon DY; Kwon JS; Park SH; Park JH; Jang SH; Yin XY; Yun JH; Kim JH; Min BH; Lee JH; Kim WD; Kim MS
    Sci Rep; 2015 Aug; 5():12721. PubMed ID: 26234712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling.
    Xia Y; Guo Y; Yang Z; Chen H; Ren K; Weir MD; Chow LC; Reynolds MA; Zhang F; Gu N; Xu HHK
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109955. PubMed ID: 31500064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo biocompatibility and degradation of novel Polycaprolactone-Biphasic Calcium phosphate scaffolds used as a bone substitute.
    Thuaksuban N; Pannak R; Boonyaphiphat P; Monmaturapoj N
    Biomed Mater Eng; 2018; 29(2):253-267. PubMed ID: 29457598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization.
    Shafiei S; Omidi M; Nasehi F; Golzar H; Mohammadrezaei D; Rezai Rad M; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():564-575. PubMed ID: 30948093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro biocompatibility analysis of novel nano-biphasic calcium phosphate scaffolds in different composition ratios.
    Ebrahimi M; Pripatnanont P; Suttapreyasri S; Monmaturapoj N
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):52-61. PubMed ID: 23847019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of metformin on dental pulp stem cells attachment, proliferation and differentiation cultured on biphasic bone substitutes.
    Houshmand B; Tabibzadeh Z; Motamedian SR; Kouhestani F
    Arch Oral Biol; 2018 Nov; 95():44-50. PubMed ID: 30048855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering.
    Rajzer I; Menaszek E; Kwiatkowski R; Planell JA; Castano O
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():183-90. PubMed ID: 25280695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.