These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 28070813)
1. Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa CCTCC AB93066: spectroscopic, microscopic, and mass balance analysis. Kang C; Wu P; Li L; Yu L; Ruan B; Gong B; Zhu N Environ Sci Pollut Res Int; 2017 Feb; 24(6):5949-5963. PubMed ID: 28070813 [TBL] [Abstract][Full Text] [Related]
2. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis. Kang C; Wu P; Li Y; Ruan B; Li L; Tran L; Zhu N; Dang Z World J Microbiol Biotechnol; 2015 Nov; 31(11):1765-79. PubMed ID: 26296415 [TBL] [Abstract][Full Text] [Related]
3. Estimates of heavy metal tolerance and chromium(VI) reducing ability of Pseudomonas aeruginosa CCTCC AB93066: chromium(VI) toxicity and environmental parameters optimization. Kang C; Wu P; Li Y; Ruan B; Zhu N; Dang Z World J Microbiol Biotechnol; 2014 Oct; 30(10):2733-46. PubMed ID: 24980945 [TBL] [Abstract][Full Text] [Related]
4. Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Li B; Pan D; Zheng J; Cheng Y; Ma X; Huang F; Lin Z Langmuir; 2008 Sep; 24(17):9630-5. PubMed ID: 18686976 [TBL] [Abstract][Full Text] [Related]
5. Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1. Yao Y; Hu L; Li S; Zeng Q; Zhong H; He Z Ecotoxicol Environ Saf; 2020 Sep; 201():110850. PubMed ID: 32531571 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. Karthik C; Barathi S; Pugazhendhi A; Ramkumar VS; Thi NBD; Arulselvi PI J Hazard Mater; 2017 Jul; 333():42-53. PubMed ID: 28340388 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of Cr(VI) reduction by Aspergillus niger: enzymatic characteristic, oxidative stress response, and reduction product. Gu Y; Xu W; Liu Y; Zeng G; Huang J; Tan X; Jian H; Hu X; Li F; Wang D Environ Sci Pollut Res Int; 2015 Apr; 22(8):6271-9. PubMed ID: 25408081 [TBL] [Abstract][Full Text] [Related]
8. Cr(VI) uptake mechanism of Bacillus cereus. Chen Z; Huang Z; Cheng Y; Pan D; Pan X; Yu M; Pan Z; Lin Z; Guan X; Wu Z Chemosphere; 2012 Apr; 87(3):211-6. PubMed ID: 22225704 [TBL] [Abstract][Full Text] [Related]
9. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Ganguli A; Tripathi AK Appl Microbiol Biotechnol; 2002 Mar; 58(3):416-20. PubMed ID: 11935196 [TBL] [Abstract][Full Text] [Related]
10. Impact of environmental stress on biochemical parameters of bacteria reducing chromium. Batool R; Yrjälä K; Hasnain S Braz J Microbiol; 2014; 45(2):573-83. PubMed ID: 25242944 [TBL] [Abstract][Full Text] [Related]
11. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium. Watts MP; Khijniak TV; Boothman C; Lloyd JR Appl Environ Microbiol; 2015 Aug; 81(16):5511-8. PubMed ID: 26048926 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Song H; Liu Y; Xu W; Zeng G; Aibibu N; Xu L; Chen B Bioresour Technol; 2009 Nov; 100(21):5079-84. PubMed ID: 19541478 [TBL] [Abstract][Full Text] [Related]
13. Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups. Garg SK; Tripathi M; Singh SK; Singh A Environ Sci Pollut Res Int; 2013 Apr; 20(4):2288-304. PubMed ID: 22864755 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. McLean JS; Beveridge TJ; Phipps D Environ Microbiol; 2000 Dec; 2(6):611-9. PubMed ID: 11214794 [TBL] [Abstract][Full Text] [Related]
15. Coadsorption and subsequent redox conversion behaviors of As(III) and Cr(VI) on Al-containing ferrihydrite. Ding Z; Fu F; Dionysiou DD; Tang B Environ Pollut; 2018 Apr; 235():660-669. PubMed ID: 29331898 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Srivastava S; Thakur IS Biodegradation; 2007 Oct; 18(5):637-46. PubMed ID: 17203372 [TBL] [Abstract][Full Text] [Related]
17. Coexistence or aggression? Insight into the influence of phosphate on Cr(VI) adsorption onto aluminum-substituted ferrihydrite. Zhu L; Fu F; Tang B Chemosphere; 2018 Dec; 212():408-417. PubMed ID: 30149314 [TBL] [Abstract][Full Text] [Related]
18. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Das S; Mishra J; Das SK; Pandey S; Rao DS; Chakraborty A; Sudarshan M; Das N; Thatoi H Chemosphere; 2014 Feb; 96():112-21. PubMed ID: 24091247 [TBL] [Abstract][Full Text] [Related]
19. Hexavalent chromium reduction by Pannonibacter phragmitetus BB isolated from soil under chromium-containing slag heap. Chai LY; Huang SH; Yang ZH; Peng B; Huang Y; Chen YH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):615-22. PubMed ID: 19337925 [TBL] [Abstract][Full Text] [Related]
20. Hexavalent chromium reduction and bioremediation potential of Fusarium proliferatum S4 isolated from chromium-contaminated soil. Shan B; Hao R; Xu H; Zhang J; Li J; Li Y; Ye Y Environ Sci Pollut Res Int; 2022 Nov; 29(52):78292-78302. PubMed ID: 35690705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]